
State Machine Implementation of the ARC CPU

Introduction
The textbook presents two approaches to the design of the control unit (CU) of the ARC
CPU, “microprogramming,” and “hardwired control.” The textbook’s approach to
developing a hardwired CU is based on use of a hardware description language (HDL)
called VHDL. This document shows an alternative approach based on FSM design
covered earlier in the course.

Background
In the Moore model of a FSM, the outputs of the state machine are totally determined by
the current state of the machine. This design sometimes requires more states to
accomplish its task than a Mealy machine in which the present state and the present input
values combine to determine the output values, but Moore machines are somewhat
simpler to work with conceptually. In a Moore a circle containing the name of the state
and the output values during that state, separated by a horizontal line, represents machine
a state:

 State Name

 List of output variables
and their values.

For the ARC datapath, there are 24 bits that the CU must generate values for on each
clock pulse: six bits that go into the A-Bus decoder, six for the B-Bus decoder, six for the
C-Bus decoder, four for the ALU function code, and two, Read (RD) and Write (WR), to
control the memory. Rather than list all 22 bits and their values below the horizontal line
in each state, we can use RTL statements to indicate how these 24 bits are to be set. We
will use two forms of RTL statement, one for states where a memory operation takes
place, and another for states when ALU operations are performed. To keep things as
simple as possible, we will assume that all states fall neatly into exactly one of these two
categories.

RTL for Memory Operations
A read operation takes the form Data Memory[Address] and a write operation
takes the form Memory[Address] Data. In both cases, the Address is the contents
of a register connected to the A Bus. For a read operation the Data is loaded into a

State Machine Design of ARC CPU Controller Page 2

register from the C Bus, whereas for a write operation the Data comes from a register
connected to the B Bus.

For memory read operations, the B Bus is ignored by the memory and may contain
arbitrary data. We will connect Register number zero (%r0), the pseudo-register that
can’t be changed and always provides 32-bits of zeros, for all read operations. The
output of the ALU is discarded for read operations because the C Bus gets its input from
memory. So the ALU function code doesn’t matter, except that the condition code bits
must not be modified when reading from memory. We will use the ALU’s ADD function
(01012) for the function code during all read (and write) operations.

For memory write operations, the output of the ALU could in fact be loaded into one of
the registers, but we will always load it into %r0, thus discarding it.

Here are some examples of RTL statements for memory operations, and how the 24 bits
output by the CU would be set for each one:

RTL A Bus B Bus C Bus ALU RD WR

R[ir] Memory[R[pc]] 100000 000000 100101 0101 1 0

Memory[R[temp0]] R[ir25:29] 100001 0, ir25:29 000000 0101 0 1

In this table, the A Bus, B Bus, and C Bus columns give the six bit number the CU sends
to the corresponding decoders. The busses actually are connected to the 32-bit contents
of the correspondingly numbered registers. The subscript “25:29” means bit numbers 25
through 29, which is the RD field of the instruction register.

RTL for ALU Operations
We will use the following notation for ALU operations:

C-Bus ALU_op(A-Bus, B-Bus)
Here, ALU_op will be the name of one of the sixteen ALU operations listed in Figure 6-4
on page 194. For those operations that ignore the B-Bus, we will set the B Bus bits to all
zeros. Here are some examples:

RTL A Bus B Bus C Bus ALU RD WR

R[temp0] Sext13(R[ir]) 100101 000000 100001 1100 0 0

R[rd] Addcc(R[rs1], R[rs2]) 0,ir14:18 0, ir0:4 0,ir25:29 0011 0 0

Decoders
We will use three decoders connected to the bits of the Instruction Register to help with
the design of the CU FSM.

• The Instruction Format Decoder decodes IR30:31 to generate signals named
set-br_op (00), call_op (01), alu_op (10), and mem_op (11).

• The Op2 Decoder decodes IR22:24 to produce 8 signals. Two of these eight outputs
are named branch (010), and sethi (100).

State Machine Design of ARC CPU Controller Page 3

• The Op3 Decoder decodes IR19:24 to produce 64 signals. Some of these are named
ld (000000), st (000100), addcc (010000), etc. See Figure 6-2 on page 192 for the
complete list of Op2 and Op3 outputs.

There would be a fourth decoder for IR25:28 used for branch instructions.

The hardwired control unit presented in the textbook uses “one hot” encoding for the
state machine in which there is a separate state flip-flop for every state, with exactly one
flip-flop true at all times. We can accomplish the same thing by decoding all the state
flip-flops to produce a number of signals that are all false except for one corresponding to
the current state. In either event, we will have wires named State_0, State_1, etc. for all
the possible states of the CU.

State Table
It would be impossible to develop a full state table for the CU FSM because with 40 bits
of input from the datapath (32 bits from the Instruction Register plus four bits from the
Condition Code) there would be 240 rows. But by using the decoders listed above as
shorthand notation for the inputs to the CU and RTL statements as shorthand for the
outputs, we can show the some of the State Table as follows:

External Inputs
(40 bits from
datapath)

Present
State

Next State
(also, flip-flop
inputs)

Outputs
(22 bits to datapath plus 2 bits to
memory)

Mem_op State_0
(Instruction
Fetch)

State_1 R[ir] Memory[R[pc]]

IR13 State_1 State_2 R[temp0] Sext13(R[ir])

~IR13 State_1 State_3 R[temp0] Sext13(R[ir])

 State_2 State_4 R[temp[0]
Add(R[ir14:18],R[temp0])

 State_3 State_2 R[temp0] Add(R[ir0:4], R[r0])

ld State_4
(Compute EA)

State_5 R[temp0]
Add(R[ir14:18], R[temp0])

st State_4 State_6 R[temp0]
Add(R[ir14:18], R[temp0])

 State_5
(Execute ld)

State_99 R[ir25:29] Memory[R[temp0]]

 State_6
(Execute st)

State_99 Memory[R[temp0]] R[ir25:29]

 State_99 State_0 R[pc] Incpc(R[pc])

State Machine Design of ARC CPU Controller Page 4

State Diagram
Finally, here is a State Diagram for the above portion of the State Table, with some
indications of how this part of the diagram would relate to other parts, not shown here.
To make the diagram more manageable, informal and simplified versions of the RTL
statements are used to indicate the outputs.

	Introduction
	Background
	RTL for Memory Operations
	RTL

	RTL for ALU Operations
	RTL

	Decoders
	State Table
	State Diagram

