NOTE: It is my policy to give a failing grade in the course to any student who either gives or receives aid on any exam or quiz.

INSTRUCTIONS: Be sure your answer sheet has *your* name, student ID, and exam ID printed on it. Pick the *best* answer for each question.

- 1. Which of the following best describes the ARC ALU's *simm13* function:
 - A. Result is bits 0:12 of the A operand, sign extended.
 - B. Result is bits 0:12 of the A operand padded left with zeros.
 - C. Add 4 to the A operand.
 - D. Add 1 to the A operand.

2.

3.

4.

- E. Add A operand and B operand; update condition codes.
- Which of the following best describes the ARC ALU's *addcc* function:
 - A. Result is bits 0:12 of the A operand, sign extended.
 - B. Result is bits 0:12 of the A operand padded left with zeros.
 - C. Add 4 to the A operand.
 - D. Add 1 to the A operand.
 - E. Add A operand and B operand; update condition codes.
- Which of the following best describes the ARC ALU's *incpc* function:
- A. Result is bits 0:12 of the A operand, sign extended.
- B. Result is bits 0:12 of the A operand padded left with zeros.
- C. Add 4 to the A operand.
- D. Add 1 to the A operand.
- E. Add A operand and B operand; update condition codes.
- Which of the following best describes the ARC ALU's sext13 function:
- A. Result is bits 0:12 of the A operand, sign extended.
- B. Result is bits 0:12 of the A operand padded left with zeros.
- C. Add 4 to the A operand.
- D. Add 1 to the A operand.
- E. Add A operand and B operand; update condition codes.
- 5. What rule best describes how the V condition code bit's value is determined:
 - A. It is set to 1 if C is 0, and it is set to 0 if C is 1.
 - B. It is set to 0 if C is 0 and it is set to 1 if C is 1.
 - C. It is set to 1 if two positive numbers are added and the result is negative or if two negative numbers are added and the result is positive. Otherwise, it is set to 0.
 - D. It is set to 1 if the carry out of the leftmost bit is 1 and the sign of the result is 1. Otherwise it is set to 0.
 - E. It is set to 0 if the carry out of the leftmost bit is 0 and the sign of the result is 0. Otherwise it is set to 1.
- 6. What is the purpose of the A-Mux, B-Mux, and C-Mux bits in ARC microinstructions?
 - A. To control whether the register numbers come from the rs_1 , rs_2 , and rd fields of the IR or from the A, B, and C fields of the microinstruction.
 - B. To select which answer the ALU is to output after it has calculated all possible answers.
 - C. To allow information to be shared across busses.
 - D. To indicate whether the busses connect to memory or to the ALU.
 - E. To override the special meaning of register 0.

Questions 7 through 12 refer to the following sample output from the ARC simulator that "we" wrote this semester. Line numbers (1-30) have been added so they can be referenced in the questions.

1	Processing file: exam.bin		
2	Memory initialized. 1048576 by	tes available.	
3	Program loaded. First non-zer	o location is	00012C
4	Register 32 changes to 0	000012C	
5	First instruction found at 000	12C	
6	Memory at 00012C returns D	6002190	
7	Register 37 changes to D	6002190	
8	PC: 00012C IR: D	6002190 ld	
9	Register 33 changes to 0	0000190	
10	Memory at 000190 returns 0	0000007	
11	Register 11 changes to 0	0000007	
12	Register 32 changes to 0	0000130	
13	Memory at 000130 returns 9	802E005	
14	Register 37 changes to 9	802E005	
15	PC: 000130 IR: 9	802E005 add	
16	Register 12 changes to 0	00000C	
17	Register 32 changes to 0	0000134	
18	Memory at 000134 returns 8	083000C	
19	Register 37 changes to 8	083000C	
20	PC: 000134 IR: 8	083000C addco	2
21	Register 00 changes to 0	0000000	
22	Register 32 changes to 0	0000138	
23	Memory at 000138 returns 9	533000B	
24	Register 37 changes to 9	533000B	
25	PC: 000138 IR: 9	533000B srl	
26	Register 10 changes to 0	0000000	
27	Register 32 changes to 0	000013C	
28	Memory at 00013C returns 9	1D02000	
29	Register 37 changes to 9	1D02000	
30	PC: 00013C IR: 9	1D02000 halt	

7. Why does register 32 change to 12C at the beginning?

- A. Because 12C is the op code for the *ld* instruction.
- B. Because register 32 holds the instruction being executed.
- C. Because the pc has to get the address of the first instruction to execute.
- D. Because the Decode operation for an *ld* instruction has the value 300.
- E. Because the Decode operation for an *ld* instruction has the value 32.
- 8. The lines, such as 6 and 13, that say "Memory at xxx returns yyy" reflect what operation?
 - A. Connecting a register to the ALU.
 - B. Reading from memory address xxx.
 - C. Writing to memory address xxx.
 - D. Reading from memory address yyy.
 - E. Writing to memory addrss yyy.
- 9. What best describes the situation on line 7?
 - A. An instruction has been read from memory and is being placed in the ir.
 - B. The pc is being updated to prepare for fetching the next instruction.
 - C. A *srl* instruction has computed a value, which is being discarded.
 - D. A *srl* instruction has computed a value, and it is being saved in general register 37.
 - E. The contents of register 37 are being added to the contents of register 32.
 - 10. Translate the contents of the ir on line 20 to assembly language.
 - A. addcc %r1, %r2, %r3
 - B. ld 0x190, %r11
 - C. add %r11, 5, %r12
 - D. addcc %r12, %r12, %r0
 - E. srl %r12, %r11, %r10

- 11. How many clock cycles were there from line 6 through line 30?
 - A. 4
 - B. 5
 - C. 14
 - D. 20
 - E. 25
- 12. What is register 33 being used for in line 9?
 - A. To set up the results of the *add* instruction on line 15.
 - B. For computing the effective address of the *ld* instruction on line 8.
 - C. To hold the address of the next instruction to execute.
 - D. To hold the instruction being executed.
 - E. To receive the results of unwanted calculations.
- 13. In a microprogrammed implementation of the ARC CPU, there are ____ clock cycles per microinstruction.
 - A. 0
 - **B**. 1
 - C. 2
 - D. It depends on the ISA instruction being executed.
 - E. It depends on the ALU function code.
- 14. What best describes the purpose of the *decode* operation of a microinstruction (when the microinstruction COND field is 111₂).
 - A. It translates an ISA instruction from assembly language to binary.
 - B. It translates an ISA instruction from binary to assembly language.
 - C. It translates an ISA instruction from RAM to ROM.
 - D. It determines the address of the next microinstruction based on the ISA instruction.
 - E. It converts octal numbers to binary.
- 15. Define *memory hierarchy*.
 - A. The rate at which information can be transferred from one place to another.
 - B. Ordering storage systems according to their speed, capacity, and cost.
 - C. When the CPU tries to read from a memory location and it has to wait for the information to be retrieved from main memory.
 - D. An I/O device, such as a keyboard, that is used to control a computer.
 - E. A circuit that interfaces between a peripheral device and a bus connected to the CPU.
- 16. Define *device controller*.
 - A. The rate at which information can be transferred from one place to another.
 - B. Ordering storage systems according to their speed, capacity, and cost.
 - C. When the CPU tries to read from a memory location and it has to wait for the information to be retrieved from main memory.
 - D. An I/O device, such as a keyboard, that is used to control a computer.
 - E. A circuit that interfaces between a peripheral device and a bus connected to the CPU.
- 17. Define *bandwidth*.
 - A. The rate at which information can be transferred from one place to another.
 - B. Ordering storage systems according to their speed, capacity, and cost.
 - C. When the CPU tries to read from a memory location and it has to wait for the information to be retrieved from main memory.
 - D. An I/O device, such as a keyboard, that is used to control a computer.
 - E. A circuit that interfaces between a peripheral device and a bus connected to the CPU.
- 18. Define *cache miss*.
 - A. The rate at which information can be transferred from one place to another.
 - B. Ordering storage systems according to their speed, capacity, and cost.
 - C. When the CPU tries to read from a memory location and it has to wait for the information to be retrieved from main memory.
 - D. An I/O device, such as a keyboard, that is used to control a computer.
 - E. A circuit that interfaces between a peripheral device and a bus connected to the CPU.

Perfect Student	Final Exam	12/18/2003
Exam ID: 6557	CS-343/Vickery	Page 4 of 4

- 19. What are the two factors that determine the bandwidth of a communication channel?
 - A. The frequency and the amplitude of the wave.
 - B. The pitch and the timbre of the sound.
 - C. The wavelength and the hue of the light.
 - D. The number of flip-flops and the number of bus wires.
 - E. The number of bits per transfer and the number of transfers per second.
- 20. An ARC program executes 1,000 instructions. 10% are *st* and 15% are *ld* instructions. What is the total number of memory access needed to process this program?
 - A. 100
 - B. 150
 - C. 250
 - D. 1000
 - E. 1250
- 21. What are the RBR and the THR?
 - A. Multiplexers that control the connections between busses and the ALU.
 - B. Fields of a microinstruction for branching and doing calculations.
 - C. Cache control bits used to determine which cache line to replace.
 - D. The Rise Bounce Rate and Task Hit Rate of a clock signal.
 - E. Data registers in a UART that the CPU can read and write.
- 22. What will be the average memory access time for a program with a cache hit ratio of 90% if there is one cache with an access time of 1 nsec and main memory has an access time of 10 nsec? Assume that when there is a cache miss the access time is only the main memory access time, not the main memory access time plus the cache access time.
 - A. 320 nsec.
 - B. 280 nsec.
 - C. 235 nsec.
 - D. 190 nsec.
 - E. 145 nsec.