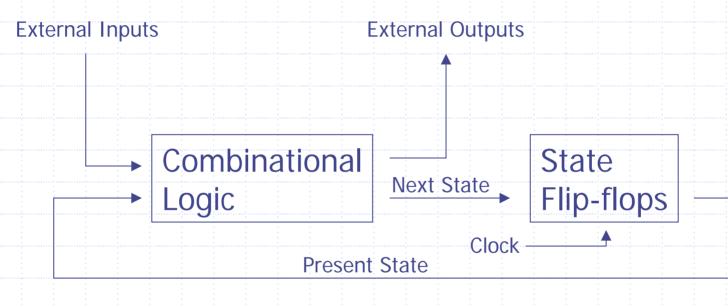
October 27, 2003

Coding Guidelines

 How to format code and other rules to

- follow for this course
- Coding Efficiency
 - Tutorial Manuals
 - Handel-C Code Optimization
 - Handel-C Advanced Optimization

Coding Efficiency


Software

- Decide what to compute
- Then compute it
- Hardware
 - Compute in parallel
 - Select output

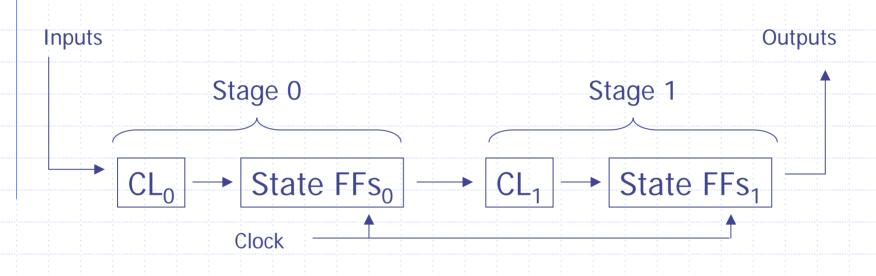
Efficiency Issues

Engineering Tradeoffs Number of gates Number of clock cycles Clock speed Power dissipation Software Design Execution time Memory usage

Finite State Machine (FSM)

Maximum clock speed is determined by propagation delays in the Combinational Logic.

Functions vs. Macros


One copy of the circuit for a function Plus multiplexers and registers for passing parameters and returning result Only one execution at a time Consider an array of functions to overcome this Macros and inline functions Are expanded for each reference Passing parameters vs. constant args

Pipeline Design

Add extra circuits to increase clock speed

- Works for repetitive computations
 - Signal processing
 - CPU fetch-execute cycle
- Delay to prime the pipeline
- Generate new result on every clock
- Faster clock

Pipeline Design

Propagation delays in CL_0 and CL_1 are less than delays in a single combined block of combinational logic, allowing for a faster clock speed.

Parallel Multiplier

See Handel-C Reference Manual

- p. 146 and 229
- But this version generates full products for arbitrary operand widths

Simulation Walkthrough

- pipeline.zip (Downloadable DK Workspace)
- Compare summaries in Evaluation dirs
- Compare build.log files