
Laboratory IV

LCD Framebuffer

Introduction
In this laboratory you will explore different ways of creating video images. There are
four projects. In the first one you will create an image “on the fly” using PAL macros to
tell your code which pixel is about to be drawn. The second one will examine the values
of some of the parameters that will affect the next two projects. The third one will create
an image on the fly, but will perform its own synchronization with the video refresh
cycle. The last project will create an image by reading pixel values from RAM in real
time, thus implementing a classic Framebuffer design. All four projects will be written
so they operate both in simulation and as FPGA configurations.

Lab Activities
1. Draw an Image Using PAL Macros for Synchronization
2. Display VideoOut Parameter Values
3. Draw a Test Pattern by Synchronizing with HBlank
4. Draw an Image From a Framebuffer
5. Submit a Report of Your Lab Activities

Draw an Image Using PAL Macros for Synchronization
Create a workspace named “Laboratory IV” and create a project in it named “SevenSeg
Display.” Delete all configurations for the project except Debug and EDIF. Set up those
configurations in the usual way. You won’t need anything but the standard header files
and libraries for this project1. You won’t need any conditional compilation in your code
for this project, or any of the other projects in this Laboratory, either.
For this project you are to write a Handel-C program named sevenseg.hcc that reads from
the keyboard and writes their ASCII codes, in hexadecimal, on two seven segment
displays. The special feature about this project is that you are to draw the seven segment
displays on the LCD screen in addition to the real seven segment displays. The LCD
display would look something like Figure 1. This is a crude image for representing seven
segment displays, but as we shall see, the fact that all the edges of the segments are either
horizontal or vertical will make this project easier to manage.
One thread is to read characters and to use their hex values to assign values to two eight-
bit variables that tell which segments to illuminate. You can do this by table lookup from
a ROM: rom unsigned 8 hex2segments[16] = { 0b00111111, 0b00000110, … }; Name
the segments of a seven segment display as in Figure 2, which corresponds to the naming
convention in the documentation for the RC200E. You won’t be drawing the decimal
point for this project, but it’s included in Figure 2 to be consistent with the
PalSevenSegWriteShape() macro (see below). To draw the character ‘0’ you need to
illuminate all segments except the middle one, Segment g. So set hex2segments[0] to

1 When you do keyboard and console I/O you need the standard “Pal Cores” headers and libraries for those
devices, of course. But be sure to omit the console files when doing projects that use PalVideoOut macros.

Last updated 10/27/2005

Laboratory IV Page 2 of 7
LCD Framebuffer

0b00111111, with the convention that bit position 0 tells whether to turn Segment a off or
on, bit position 1 tells whether to turn Segment b off or on, etc. The leftmost bit (bit
position 7) controls the decimal point on the RC200E seven segment displays.

Figure 1. LCD display showing 0x88. Your colors may vary!

Figure 2. Naming convention for the seven segments.

Segment a

Segment g

Segment d

Seg-
ment f

Seg-
ment

b

Seg-
ment

e

Seg-
ment

c

decimal pt

The idea is that you can do two table lookups from hex2segments to determine what
segments to turn on (or not) each time you read a character from the keyboard. One
thread of your project should update sixteen bits of global information (8 bits each for the

Laboratory IV Page 3 of 7
LCD Framebuffer

two displays) each time the user presses a key on the keyboard. Use the state of these bits
as arguments to two calls to PalSevenSegWriteShape() to display the ASCII codes for the
characters typed.

Moving on to the video part of the project, code another thread that repeatedly determines
the coordinates of the pixel currently being refreshed on the LCD, and decides what color
to display there. For this project, you need to synchronize your code with the LCD
refresh cycle by writing to the screen on the next clock cycle after you determine the
current coordinate position. Later projects will deal with the issue of synchronizing your
code with the specific position in the refresh cycle more carefully. The macros,
PalVideoOutGetX(handle) and PalVideoOutGetY(handle) return the current X and Y
coordinate values, and you can use them repeatedly in a single expression without using
any clock cycles. Your code will undoubtedly consist of one big if statement that tests if
the coordinates are inside one of the currently “on” segments of either seven-segment
display or not:

if (/* fourteen tests OR’d together */)
 PalVideoOutWrite(foreground color)
else
 PalVideoOutWrite(background color)

You probably want to make the sides of each segment vertical or horizontal to make it
easy to test whether a point is inside a particular segment or not. With proper macro
expressions defined, your fourteen tests would include code like, “ … ((left_seg_a == 1)
&& (x > left_seg_a_left) && (x < left_seg_a_right) && (y > left_seg_a_top) && y <
(left_seg_a_bottom)) || … .” In this code, I’ve assumed that x is a macro expression
equivalent to PalVideoOutGetX() and y is equivalent to PalVideoOutGetY().
Be sure your code works correctly both for Debug and EDIF configurations.

Display VideoOut Parameter Values
Create a second project called VideoOut_Parameters and configure it for both the
RC200E and for Simulation. You will need to include the pal_console.hch header file in
your source code and the pal_console.hcl library file in your Linker list for this project
because you will be writing output using the LCD screen as a console. Write a Handel-C
program called parameters.hcc that displays the following parameters on the PalConsole
at run time:

• The number of visible pixels per scan line, determined at compile time.

• The number of visible scan lines, determined at compile time.

• The number of visible pixels per scan line, determined at run time.

• The number of visible scan lines, determined at run time.

• The total number of pixels per scan line.

• The total number of scan lines.

• The width (number of bits) needed for a variable that holds the X coordinate of a
visible pixel.

Laboratory IV Page 4 of 7
LCD Framebuffer

• The width needed for a variable that holds the Y coordinate of a visible pixel.

• The width needed for a variable that ranges over all X coordinates on a scan line.

• The width needed for a variable that ranges over all Y coordinates on the display.

• The width needed for a variable that holds a RAM memory address.

• The width needed for a variable that holds a word of RAM data.
Be sure to use the appropriate PAL macros to determine all these parameter values. For
example, some of the widths are not what you might expect them to be. Run the program
both in simulation mode and on the RC200E, and note the differences between the two
sets of values. Be sure to report these results in the Discussion section of you lab report,
perhaps as tabular data.

Sample Output from parameters.hcc

Draw a Test Pattern by Synchronizing with HBlank
Your third project is to be named TestPattern, and the Handel-C source file should be
called test_pattern.hcc. This project will use the PalVideoOut macros for writing to the
screen instead of the PalConsole macros.
Use PalVideoOutGetHBlank() to synchronize your code with the beginning of each scan
line. Draw a white pixel in the first column of each scan line, and draw vertical bars of
alternating colors across the remainder of each line. The requirements for this project can
be accomplished quite easily because (1) It’s all right to write to the LCD during the

Laboratory IV Page 5 of 7
LCD Framebuffer

invisible portions of the refresh cycle (nothing happens), and (2) if you write white pixels
during all the clock cycles when HBlank is true, the last one you write will show up in
column one of the next scan line.
An easy way to draw alternating colors on a scan line is simply to test one bit position of
the register you use to keep track of the current X position on the scan line. If you test bit
0 (the rightmost bit), the bars will be one pixel wide; if you test bit 1, the bars will be two
pixels wide, etc.
Be sure your program works equally well when for both the Debug and EDIF build
configurations.

Draw an Image From a Framebuffer
The fourth project is to synchronize your code with both the horizontal and vertical
synchronization signals for VideoOut and to use one of the PL1 RAM banks on the
RC200E as a framebuffer to hold an image to be displayed. To make debugging
possible, the project draws a single, static image on the LCD display. Create a project
named Framebuffer, and add framebuffer.hcc to it. Configure it both for Debug and
EDIF.
Use one of the RC200E’s PL1 memory banks as a framebuffer. Decide how to map pixel
coordinates to memory addresses, and write a test pattern into RAM. The test pattern is
to consist of a one-pixel wide white border along all four edges of the visible part of the
display. Inside the border, draw vertical bars of alternating colors. Use the simulated
version to verify that the correct pixel values are being stored in the correct memory
locations. (Note: The PAL virtual console shows byte addresses, not word addresses.)
Now write code that continuously reads from the framebuffer and draws the pixels to
their proper locations on the screen. Because of the delays involved in reading from the
memory and writing to the screen, you will have to start processing each scan line during
the end of the HBlank period of the previous scan line.
Use macro expressions to parameterize your code so that it does not directly use any of
the numerical values you looked at in the Parameters project. But be sure your code will
work correctly regardless of whether it is being simulated or configured for the FPGA.
You are to meet this requirement using the proper macros to determine parameter values
for Debug and EDIF rather than using conditional compilation.
You will need to pipeline your operations, staring 3 clocks before the beginning of a scan
line. If t(0) refers to the clock period during which a pixel is displayed in the leftmost
column of the display (i.e., the first clock cycle after HBlank goes false), the first few
stages of the pipeline can be represented as shown in Table 1. In this table, “set address”
refers to setting the address for reading from the PL1 RAM, “read pixel” means to read
the binary number giving the RGB values for a pixel from the RAM, “write pixel” means
to write the RGB values for a pixel to the LCD, and “pixel n displays” means that the
new pixel color becomes visible.

Laboratory IV Page 6 of 7
LCD Framebuffer

t(-3) Set address for pixel 0

t(-2) Set address for pixel 1 Read pixel 0

t(-1) Set address for pixel 2 Read pixel 1 Write pixel 0

t(0) Set address for pixel 3 Read pixel 2 Write pixel 1 Pixel 0 displays

t(1) Set address for pixel 4 Read pixel 3 Write pixel 2 Pixel 1 displays

Table 1. Pipeline timing.

When you test your code on the simulator, you can position the mouse over the simulated
display to see what pixel value has been written to each position. Verify that all the
pixels in the first and last rows and first and last columns -- and no others -- are white.

There is a bug in the simulator. If you make the Pal Virtual Console big
enough to see the entire screen at once, it chops off the right and bottom
edges so you can’t see those borders. However, if leave the window small
and use the scroll bars to look at those edges, you can see them.

Be sure your code generates “pixel perfect” images on both the simulated console and on
the actual RC200E! Note that the screen shots below don’t show the cursor crosshair, but
the status lines show that the pixel values the cursor was on do have the correct values.

Sample Framebuffer Test Pattern Output

Laboratory IV Page 7 of 7
LCD Framebuffer

Optional: Write a macro expression or function named write_pixel (x, y, pixel) that
writes pixel values into the framebuffer. This code must block during periods when the
memory is being used to update the display to avoid mangling the contents of the RAM.
Use write_pixel() to show the ASCII codes for keyboard characters by drawing the
images of two seven-segment displays on the console, as in the SevenSeg project.

Submit a Report of Your Lab Activities
Use a word processor to write a report of your lab activities that follows the format for
lab reports discussed in class. Email it to me by midnight of the due date.

	Introduction
	Lab Activities
	Draw an Image Using PAL Macros for Synchronization
	Display VideoOut Parameter Values
	Sample Output from parameters.hcc

	Draw a Test Pattern by Synchronizing with HBlank
	Draw an Image From a Framebuffer
	Sample Framebuffer Test Pattern Output

	Submit a Report of Your Lab Activities

