

DK4

DK Libraries Manual

For DK version 4

DK Libraries Manual

www.celoxica.com

Celoxica, the Celoxica logo and Handel-C are trademarks of Celoxica Limited.

All other products or services mentioned herein may be trademarks of their respective
owners.

Neither the whole nor any part of the information contained in, or the product described
in, this document may be adapted or reproduced in any material form except with the
prior written permission of the copyright holder.

The product described in this document is subject to continuous development and
improvement. All particulars of the product and its use contained in this document are
given by Celoxica Limited in good faith. However, all warranties implied or express,
including but not limited to implied warranties of merchantability, or fitness for purpose,
are excluded.

This document is intended only to assist the reader in the use of the product. Celoxica
Limited shall not be liable for any loss or damage arising from the use of any information
in this document, or any incorrect use of the product.

The information contained herein is subject to change without notice and is for general
guidance only.

Copyright © 2004 Celoxica Limited. All rights reserved.

Authors: SB

Document number: RM-1011-2.0

Customer Support at http://www.celoxica.com/support/

Celoxica in Europe Celoxica in Japan Celoxica in the Americas

T: +44 (0) 1235 863 656 T: +81 (0) 45 331 0218 T: +1 800 570 7004

E: sales.emea@celoxica.com E: sales.japan@celoxica.com E:
sales.america@celoxica.com

DK Libraries Manual

www.celoxica.com Page 1

Contents

1 C++ WIDE NUMBER LIBRARY.. 5
1.1 USING THE WIDE NUMBER LIBRARY .. 5
1.2 SIMPLE WIDE NUMBER LIBRARY EXAMPLE... 5
1.3 CASTING IN THE WIDE NUMBER LIBRARY.. 6
1.4 TYPES SUPPLIED .. 7
1.5 INT CLASS .. 7
1.6 UINT CLASS .. 8
1.7 METHODS: INT AND UINT .. 8

1.7.1 Conversion to signed ...9
1.7.2 Conversion to unsigned.. 10
1.7.3 GetWidth method.. 10
1.7.4 PrintString method.. 11
1.7.5 Print method .. 12
1.7.6 PrintFile method ... 12
1.7.7 WriteFile method .. 13
1.7.8 ReadFile method... 14

1.8 FUNCTIONS... 14
1.8.1 Cat function ... 15
1.8.2 Drop function ... 17
1.8.3 Take function ... 17

1.9 OPERATORS SUPPORTED BY WIDE NUMBER LIBRARY 18

2 NUMLIB LIBRARY... 20
2.1 ARITHMETIC OPERATIONS .. 20
2.2 BITWISE OPERATIONS ... 21

2.2.1 Logical operations ... 21
2.2.2 Concatenation operations... 22
2.2.3 Drop operations.. 23
2.2.4 Take operations .. 23
2.2.5 Shift operations .. 23
2.2.6 Bit selection operations.. 24
2.2.7 Bit insertion operations .. 24

2.3 COMPARISON OPERATIONS ... 24
2.4 FILE I/O AND PRINT: NUMLIB LIBRARY.. 26
2.5 GENERAL NUMBER-HANDLING ROUTINES.. 27
2.6 NUMBER ALLOCATION AND DE-ALLOCATION 28

3 INTRODUCTION TO THE PLUGIN API .. 29
3.1 FUNCTION NAME RETENTION IN C++.. 29
3.2 SPECIFYING PLUGINS IN HANDEL-C SOURCE CODE 29
3.3 SIMULATOR INTERFACE TO PLUGINS.. 30

DK Libraries Manual

www.celoxica.com Page 2

3.4 DATA STRUCTURES ... 31
3.4.1 HCPLUGIN_INFO... 31
3.4.2 Callback data structure .. 32

3.5 SIMULATOR TO PLUGIN FUNCTIONS... 32
3.5.1 PlugInOpen .. 33
3.5.2 PlugInOpenInstance .. 34
3.5.3 PlugInOpenPort .. 34
3.5.4 PlugInSet (default name) ... 35
3.5.5 PlugInGet (default name)... 36
3.5.6 PlugInStartCycle ... 36
3.5.7 PlugInMiddleCycle ... 37
3.5.8 PlugInEndCycle... 37
3.5.9 PlugInClosePort .. 37
3.5.10 PlugInCloseInstance .. 37
3.5.11 PlugInClose .. 38

3.6 SIMULATOR CALLBACK ERROR FUNCTION.. 38
3.6.1 HCPLUGIN_ERROR_FUNC... 38

4 PLUGINS SUPPLIED .. 39
4.1 CONNECTING SIMULATIONS TOGETHER .. 39

4.1.1 DKConnect.dll syntax .. 39
4.1.2 DKConnect bit range ... 40

4.2 SHARING A PORT BETWEEN PLUGINS ... 41
4.2.1 DKShare.dll syntax.. 41

4.3 SYNCHRONIZING MULTIPLE SIMULATIONS 42
4.3.1 DKSync.dll syntax ... 42

4.4 PLUGINS EXAMPLE: USING DKSYNC.DLL.. 43
4.4.1 Plugins example: Project A source code.. 44
4.4.2 Plugins example: Project B source code.. 45

4.5 WRITING A PLUGIN: EXAMPLE... 46
4.5.1 C header file: plugin.h ... 46
4.5.2 Writing plugins example: plugin file ... 46
4.5.3 Writing plugins example: Handel-C file... 51

5 INDEX... 53

DK Libraries Manual

www.celoxica.com

Conventions
A number of conventions are used in this document. These conventions are detailed
below.

Warning Message. These messages warn you that actions may damage your hardware.

Handy Note. These messages draw your attention to crucial pieces of information.

Hexadecimal numbers will appear throughout this document. The convention used is
that of prefixing the number with '0x' in common with standard C syntax.

Sections of code or commands that you must type are given in typewriter font like this:
 void main();

Information about a type of object you must specify is given in italics like this:
 copy SourceFileName DestinationFileName

Optional elements are enclosed in square brackets like this:
 struct [type_Name]

Curly brackets around an element show that it is optional but it may be repeated any
number of times.
 string ::= "{character}"

DK Libraries Manual

www.celoxica.com

Assumptions & Omissions
This manual assumes that you:

• have used Handel-C or have the Handel-C Language Reference Manual

• are familiar with common programming terms (e.g. functions)

• are familiar with MS Windows

This manual does not include:

• instruction in VHDL or Verilog

• instruction in the use of place and route tools

• tutorial example programs. These are provided in the Handel-C User Manual

DK Libraries Manual

www.celoxica.com Page 5

1 C++ Wide Number Library
The C++ Wide Number Library allows you to use Handel-C variables of unlimited width in
C++ functions, and to manipulate those variables. If you are using ANSI-C or plugins,
use the Numlib library instead.

Classes

The library defines the classes Int and UInt (signed and unsigned integers of some
defined width) and overloads the operators of those classes. It also provides methods
associated with those classes, allowing you to perform standard Handel-C bit
manipulation functions, such as taking and dropping bits.

You cannot cast UInt or Int variables to different widths, and may only perform
operations on variables of the same type and width. To perform operations on UInt or
Int variables of different widths, use Cat, Take or Drop to change the variables' width.

To convert UInt or Int variables to standard types, use the type conversion methods.

To use the C++ Number Class library, you need to add the InstallDir\DK\Sim\Include
directory to your C++ compiler include search path. Use the -I"PathName" command
line option (for Visual C++ or GCC) or refer to your C++ compiler documentation for how
to do this.

In your C++ code, you need to include hcnum.h and specify the namespace containing
the functions:

#include <hcnum.h>
using namespace HCNum;

1.1 Using the wide number library

The wide number library is used

• when transferring wide variables between a Handel-C program and a C/C++
program

• when translating C++ to Handel-C for simulation

This allows you to write simulation .dll files in C++ which are passed Handel-C
variables through function calls.

1.2 Simple wide number library example

This simple example shows a wide variable being passed between a Handel-C file and a
C++ file. The value of the Handel-C variable may be viewed in the debugger, but purely
C++ variables can not.

DK Libraries Manual

www.celoxica.com Page 6

Handel-C:

extern "C++" int 99 Fred(unsigned 2043 x);

set clock = external;
void main(void)
{
 int 99 a;
 unsigned b;

 a = Fred(b);
}

C++:

Int<99> Fred(UInt<2043> x)
{
 ...
}

1.3 Casting in the wide number library

As with Handel-C, you cannot cast between numbers of different widths. You can cast
between Ints and UInts of the same width. You can extend or sign extend to substitute
for casting between different widths.

Example

Int<8> x;
UInt<7> y;

/*
 * To compare x and y
 * by casting y to an Int and
 * concatenating y with a 1-bit wide 0
 */
if (x>Cat(Int<1>(0),(Int<7>)y))
{
 ...
}

Visual C++ 6 has a known defect which causes the compiler to fail to infer template
parameters. The example would have to be written as
if (x>Cat<1, 7> (Int<1>(0), (Int<7>)y)) ...

DK Libraries Manual

www.celoxica.com Page 7

1.4 Types supplied

The following types are defined in the Wide Number Library to provide compiler
independent definitions of non-standard types.

Type Description

uint32 unsigned 32-bit integer: equivalent to
unsigned long or unsigned __int32.

uint64 unsigned 64-bit integer: equivalent to
unsigned long long or unsigned
__int64.

int32 signed 32-bit integer: equivalent to
signed long or signed __int32.

int64 signed 64-bit integer: equivalent to
signed long long or signed
__int64.

1.5 Int class

The Int template class allows you to represent signed integers of any width in C++. It
consists of constructors, overloaded operators and methods for bit manipulation and
input/output.

Constructors

Int<width>();

Int<width>(const v);

Int<width>(const char *a);

The constructors allow you to construct a Int object of the specified width width,
optionally initialized with a constant.

The initialization constant may be an int or a string constant.

Example

Int<53> x = 725;
Int<10> y("0xf3");
Int<21> v(20057);

DK Libraries Manual

www.celoxica.com Page 8

1.6 UInt class

The UInt template class allows you to represent unsigned integers of any width in C++.
It consists of constructors, overloaded operators and methods for bit manipulation and
input/output.

Constructors

UInt<width>();

UInt<width>(const int v);

UInt<width>(const char *a);

The constructors allow you to construct a UInt object of the specified width width,
optionally initialized with a constant.

The initialization constant may be an int or a string constant.

Example

UInt<53> x = 99;
UInt<10> y("0x8b");
UInt<21> v(20056);

1.7 Methods: Int and UInt

Identical methods are supplied for UInt and Int classes.

Type conversion

Method name Description

int32 IntOf() Convert the current object to a
signed int32

uint32 UIntOf() Convert the current object to an
unsigned uint32

int64 Int64Of() Convert the current object to a
signed int64

uint64
UInt64Of()

Convert the current object to an
unsigned uint64

DK Libraries Manual

www.celoxica.com Page 9

Bit manipulation

Method name Description

uint32 GetWidth Gives the width of the
current object in uint32

Input/Output

uint32 PrintString(char
*Buffer, uint32
BufferLength, uint32
Base);

Writes the value of
the current object as
a string to a buffer
and returns required
buffer size

void Print(uint32
Base);

Writes the value of
the current object as
a string to stdout

void PrintFile(FILE
*FilePtr, uint32 Base);

Writes the value of
the current object as
a string to a file

void WriteFile(FILE
*FilePtr);

Writes the value of
the current object as
raw binary data to a
file

void ReadFile(FILE
*FilePtr);

Reads raw binary data
from a file and
assigns it to the
current object

Example

FILE *FilePtr = fopen("Jim", "w");
Int<53> x = 99;
x.PrintFile(FilePtr, 10);

1.7.1 Conversion to signed

There are two methods of converting to a standard C++ signed number.

To convert a UInt or Int of 32 bits or less to a standard signed 32-bit integer in int32,
use the method:

int32 IntOf()

If the original number is wider than 32 bits, the least significant bits will be returned.

To convert a UInt or Int of 64 bits or less to a standard signed 64-bit integer, use

DK Libraries Manual

www.celoxica.com Page 10

int64 Int64Of()

If the original number is wider than 64 bits, the least significant 64 bits will be returned.

Example

UInt<58> x;
Int<7> y;
int32 narrowInt;
int64 wideInt;

narrowInt = y.IntOf();
wideInt = x.Int64Of();

1.7.2 Conversion to unsigned

There are two methods of converting to a standard C++ unsigned number.

To convert a UInt or Int of 32 bits or less to a standard unsigned 32-bit integer in
uint32, use

uint32 UIntOf()

If the original number is wider than 32 bits, the least significant 32 bits will be returned.

To convert a UInt or Int of 64 bits or less to a standard unsigned 64-bit integer, use

uint64 UInt64Of()

If the original number is wider than 64 bits, the least significant 64 bits will be returned.

Example

UInt<58> x;
Int<7> y;
uint32 narrowInt;
uint64 wideInt;

narrowInt = y.UIntOf();
wideInt = x.UInt64Of();

1.7.3 GetWidth method

uint32 GetWidth()

Description

GetWidth() returns the width of the current object in bits.

DK Libraries Manual

www.celoxica.com Page 11

Requirements

Header file: hcnum.h

Namespace: HCNum

Example

Int<53> x = 99;
uint32 width;

width = x.GetWidth();

1.7.4 PrintString method

uint32 PrintString(char *Buffer, uint32 BufferLength ,
 uint32 Base)

Description

PrintString() writes the value of the current object to the buffer pointed to by Buffer
in the base specified by Base. If you set Buffer to NULL and BufferLength to 0, the
return value indicates the maximum number of characters needed to print the string
(including the terminating NULL). You can then use this to set BufferLength for the
correct value.

Parameters

Name Description Possible
values

Buffer Character buffer to
receive result

N/A

BufferLength Length of buffer
pointed to by Buffer

0 to (232-1)

Base Base to print in 2, 8, 10 or 16

Requirements

Header file: hcnum.h

Namespace: HCNum

Example

Int<53> x = 99;
char hexvalue[60];
length = x.PrintString(hexvalue, 60, 16);

DK Libraries Manual

www.celoxica.com Page 12

The array hexvalue will contain the text 0x63 (99 in base 16). length will be set to 5.

1.7.5 Print method

void Print(uint32 Base);

Description

Print() writes the value of the current object to stdout in the base specified by Base.

Parameters

Name Description Possible values

Base Base to print in 2, 8, 10 or 16

Requirements

Header file: hcnum.h

Namespace: HCNum

Example

UInt<9> x = 447;

x.Print(10);

Prints 447 (the value of x) to stdout.

1.7.6 PrintFile method

void PrintFile(FILE *FilePtr, uint32 Base)

Description

PrintFile() writes the value of the current object to the file pointed to by FilePtr in
the base specified by Base.

Parameters

Name Description Possible
values

FilePtr Handle of file to be
written to

N/A

Base Base to print in 2, 8, 10 or 16

Requirements

Header file: hcnum.h

DK Libraries Manual

www.celoxica.com Page 13

Namespace: HCNum

Example

UInt<57> x = 204;
FILE *fpointer;

fpointer = fopen("data.out", "w");
x.PrintFile(fpointer, 10);
fclose(fpointer);

1.7.7 WriteFile method

void WriteFile(FILE *FilePtr);

Description

WriteFile() writes the value of the current object to the file pointed to by FilePtr in
raw binary data. After writing, the value of the file pointer FilePtr will be incremented
to the new position. If an error occurs, the value of the file pointer FilePtr is undefined.

Parameters

Name Description Possible values

FilePtr Handle of file to be
written to

N/A

Requirements

Header file: hcnum.h

Namespace: HCNum

Example

UInt<57> x = 204;
FILE *fpointer;

fpointer = fopen("data.raw", "w");
x.WriteFile(fpointer);
fclose(fpointer);

DK Libraries Manual

www.celoxica.com Page 14

1.7.8 ReadFile method

void ReadFile(FILE *FilePtr)

Description

ReadFile() reads the raw data from the file pointed to by FilePtr into the current
object. The data read will be the same width as the current object. After reading, the
value of the file pointer FilePtr will be incremented to the new position. If the end of file
character is reached unexpectedly, the results are undefined.

Parameters

Name Description Possible
values

FilePtr Handle of file to be read
from

N/A

Requirements

Header file: hcnum.h

Namespace: HCNum

Example

UInt<57> x;
FILE *fpointer;

fpointer = fopen("data.in", "r");
x.ReadFile(fpointer);
fclose(fpointer);

1.8 Functions

The following functions are supplied for bit manipulation:

Cat function

template<int W1, int W2> Int<W1 + W2>
 Cat(const Int <W1> &LHS, const Int<W2> &RHS);

template<int W1, int W2> UInt<W1 + W2>
 Cat(const UInt <W1> &LHS, const UInt<W2> &RHS);

Cat() concatenates RHS onto the end of LHS and returns the result. Equivalent to the
Handel-C expression LHS@RHS.

DK Libraries Manual

www.celoxica.com Page 15

Drop function

template<int W1, int W2> Int<W2-W1>
 Drop(const Int <W2> &LHS);

template<int W1, int W2> UInt<W2-W1>
 Drop(const UInt <W2> &LHS);

Drop() returns all of the bits from LHS except the W1 least significant bits. Equivalent to
the Handel-C expression LHS \\ W1.

Take function

template<int W1, int W2> Int<W1>
 Take(const Int<W2> &LHS);

template<int W1, int W2> UInt<W1>
 Take(const UInt<W2> &LHS);

Returns the W1 least significant bits from LHS. Equivalent to the Handel-C expression LHS
<- W1.

Example

UInt<8> x;
UInt<7> y;
UInt<15> z;

z = Cat(x,y);

/*
 * To compare x and y
 * by concatenating y with a 1-bit wide 0
 */
if (x>Cat(UInt<1>(0),y))
{
 ...
}

1.8.1 Cat function

Int<W1 + W2> Cat(const Int <W1> &LHS, const Int<W2> &RHS);

UInt<W1 + W2> Cat(const UInt <W1> &LHS, const UInt<W2> &RHS);

Description

Cat() concatenates RHS onto the end of LHS and returns a result whose width is the sum
of the widths of the two operands. It is equivalent to the Handel-C expression LHS@RHS.

DK Libraries Manual

www.celoxica.com Page 16

As in Handel-C, you can use Cat to concatenate zero with a number or sign extend to
substitute for casting between different widths.

template<int W1, int W2> Int<W1+W2>
 Cat(const Int<W1> &LHS, const Int<W2> &RHS);

template<int W1, int W2> UInt<W1+W2>
 Cat(const UInt<W1> &LHS, const UInt<W2> &RHS);

Parameters

Name

Description

Possible
values

LHS Bits to form MS side of new number N/A

RHS Bits to form LS side of new number N/A

Requirements

Header file: hcnum.h

Namespace: HCNum

Example

UInt<8> x;
UInt<7> y;
UInt<15> z;

z = Cat(x,y);

/* To compare x and y
* by concatenating y with a 1-bit wide 0
*/
if (x>Cat(UInt<1>(0),y)) // Equivalent to if (x > ((unsigned 1) 0 @ y)) in
Handel-C
{
 ...
}

Visual C++ 6 has a known defect which causes the compiler to fail to infer template
parameters. The example would have to be written as z = Cat<8, 7>(x,y); and
x>Cat<1, 7> (...)

DK Libraries Manual

www.celoxica.com Page 17

1.8.2 Drop function

Int<W2-W1> Drop(const Int <W2> &LHS);

UInt<W2-W1> Drop(const UInt <W2> &LHS);

Description

Drop() returns all of the bits from LHS except the W1 least significant bits. It is
equivalent to the Handel-C expression LHS \\ W1.

template<int W1, int W2> Int<W2-W1>
 Drop(const Int<W2> &LHS);

template<int W1, int W2> UInt<W2-W1>
 Drop(const UInt<W2> &LHS);

Parameters

Name Description Possible values

W1 Number of LS bits to drop 0 to width of Var

LHS Number to take bits from N/A

Requirements

Header file: hcnum.h

Namespace: HCNum

Example

UInt<7> x;
UInt<15> z;

x = Drop<8>(z);

Visual C++ 6 has a known defect which causes the compiler to fail to infer template
parameters. The example would have to be written as x = Drop<8, 15>(z);

1.8.3 Take function

Int<W1> Take(const Int<W2> &LHS);

UInt<W1> Take(const UInt<W2> &LHS);

Description

Take() returns the W1 least significant bits from LHS. It is equivalent to the Handel-C
expression LHS <- W1.

DK Libraries Manual

www.celoxica.com Page 18

template<int W1, int W2> Int<W1>
 Take(const Int<W2> &LHS);

template<int W1, int W2> UInt<W1>
 Take(const UInt<W2> &LHS);

Parameters

Name Description Possible
values

W1 Number of LS bits to
return

0 to width of
Var

LHS Number to take bits from N/A

Requirements

Header file: hcnum.h

Namespace: HCNum

Example

UInt<7> x;
UInt<15> z;

x = Take<7>(z);

Visual C++ 6 has a known defect which causes the compiler to fail to infer template
parameters. The example would have to be written as x = Take<7, 15>(z);

1.9 Operators supported by wide number library

The wide number library provides the following overloaded operators:

+ - * / % == != >

>= < <= ~ & | ^

! && || ++ -- += -=

*= /= %= ^= &= |=

(where * is the multiplication operator and & is the bitwise AND)

These follow the Handel-C rules of width and types (for example, + will operate on two
Ints of the same width or two UInts of the same width but not on different widths or
mixtures of Int and UInt).

DK Libraries Manual

www.celoxica.com Page 19

Shift operators

Shift operators are non-standard, in that the right-hand operand must be an unsigned
int.

>> << <<= >>=

Example

UInt<32> x = 64;
UInt<16> y = 4;
UInt<32> z;
z = x >> y.UIntOf();
z <<= 9;

DK Libraries Manual

www.celoxica.com Page 20

2 Numlib library
The Numlib library contains routines to deal with values that are greater than 64 bits
wide. The numbers are stored in a NUMLIB_NUMBER structure and the routines use this
structure to operate on. There are routines to convert NUMLIB_NUMBER structures to 32
and 64-bit values.

You can use these routines in your plugin by including the header file numlib.h and
linking with the appropriate Numlib library:

• If you are using Microsoft Visual C++ as your backend compiler, link to
numlib.lib.

• If you are using GCC, link to numlibgcc.lib.

The numlib library files are installed in the DK\Sim\Lib directory.

Use the Numlib library if you are using ANSI-C or using plugins. If you are using C++,
use the Wide Number library instead.

2.1 Arithmetic operations

These routines are supplied in the Numlib library to deal with values that are greater
than 64 bits wide. The numbers are stored in a NUMLIB_NUMBER structure and the
routines use this structure to operate on. You can use these routines in your plugin by
including the header file numlib.h.

include "numlib.h" (in C or C++ code for plugin)

All operations are Handel-C like, and require that parameters are of the correct width. In
some cases information about the sign of values must be provided. Note that in Handel-C
you can only do divisions between variables with the same type and the same sign
(signed by signed or unsigned by unsigned).

EXPORT void NumLibUMinus(NUMLIB_NUMBER *a, NUMLIB_NUMBER *b);
b = -a

EXPORT void NumLibAdd(NUMLIB_NUMBER *a, NUMLIB_NUMBER *b, NUMLIB_NUMBER *Re
sult)
Result = a + b

EXPORT void NumLibSubtract(NUMLIB_NUMBER *a, NUMLIB_NUMBER *b, NUMLIB_NUMBE
R *Result)
Result = a - b

EXPORT void NumLibMultiply(NUMLIB_NUMBER *a, NUMLIB_NUMBER *b, NUMLIB_NUMBE
R *Result)
Result = a * b

DK Libraries Manual

www.celoxica.com Page 21

EXPORT void NumLibDivide(NUMLIB_NUMBER *a, NUMLIB_NUMBER *b, int Signed, NU
MLIB_NUMBER *Result)
Result = a / b.

All numbers treated as signed or unsigned, depending on the value of Signed.

EXPORT void NumLibMod(NUMLIB_NUMBER *a, NUMLIB_NUMBER *b, int Signed, NUMLI
B_NUMBER *Result)
Result = a % b.

All numbers treated as signed or unsigned, depending on the value of Signed.

EXPORT void NumLibDivMod(NUMLIB_NUMBER *a, NUMLIB_NUMBER *b, int Signed, NU
MLIB_NUMBER *DivResult, NUMLIB_NUMBER *ModResult)
DivResult = a / b, ModResult = a % b.

All numbers treated as signed or unsigned, depending on the value of Signed.

2.2 Bitwise operations

These routines are supplied in the Numlib library to deal with values that are greater
than 64 bits wide. The numbers are stored in a NUMLIB_NUMBER structure and the
routines use this structure to operate on. You can use these routines in your plugin by
including the header file numlib.h.

include "numlib.h" (in C or C++ code for plugin)

2.2.1 Logical operations

EXPORT void NumLibNot(NUMLIB_NUMBER *a, NUMLIB_NUMBER *Result)
Result = ~a
EXPORT void NumLibAnd(NUMLIB_NUMBER *a, NUMLIB_NUMBER *b, NUMLIB_NUMBER
*Result)
Result = a & b

EXPORT void NumLibOr(NUMLIB_NUMBER *a, NUMLIB_NUMBER *b, NUMLIB_NUMBER
*Result)
Result = a | b

EXPORT void NumLibXor(NUMLIB_NUMBER *a, NUMLIB_NUMBER *b, NUMLIB_NUMBER
*Result)
Result = a ^ b

DK Libraries Manual

www.celoxica.com Page 22

2.2.2 Concatenation operations

In all the functions the int32 and int64 values are left aligned in line with the plugin
interface. The results must be greater than 64 bits wide.

EXPORT void NumLibCat64_32(uint64 *a, unsigned long wa,
unsigned long *b, unsigned long wb, NUMLIB_NUMBER *Result)
Concatenate wa bits of 64-bit a and wb bits of 32-bit b and place it in value pointed to by
Result.
Result = (int wa) a @ (int wb) b

EXPORT void NumLibCat32_64(unsigned long *a, unsigned long wa,
uint64 *b, unsigned long wb, NUMLIB_NUMBER *Result)
Concatenate wa bits of 32-bit a and wb bits of 64-bit b and place it in value pointed to by
Result.
Result = (int wa) a @ (int wb) b

EXPORT void NumLibCat64_64(uint64 *a, unsigned long wa, uint64 *b, unsigned
long wb, NUMLIB_NUMBER *Result)
Concatenate wa bits of 64-bit a and wb bits of 64 bit b and place it in value pointed to by
Result.
Result = (int wa) a @ (int wb) b

EXPORT void NumLibCat32_n(unsigned long *a, unsigned long wa,
NUMLIB_NUMBER *b,NUMLIB_NUMBER *Result)
Concatenate wa bits of 32-bit a with value b and place it in value pointed to by Result.
Result = (int wa) a @ b

EXPORT void NumLibCatn_32(NUMLIB_NUMBER *a, unsigned long *b,
unsigned long wb, NUMLIB_NUMBER *Result)
Concatenate value a with wb bits of 32-bit b and place it in value pointed to by Result.
Result = a @ (int wb) b

EXPORT void NumLibCat64_n(uint64 *a, unsigned long wa, NUMLIB_NUMBER *b,
NUMLIB_NUMBER *Result)
Concatenate wa bits of 64-bit a with value b and place it in value pointed to by Result.
Result = (int wa) a @ b

EXPORT void NumLibCatn_64(NUMLIB_NUMBER *a, uint64 *b, unsigned long wb,
NUMLIB_NUMBER *Result)
Concatenate value a with wb bits of 64-bit b and place it in value pointed to by Result.
Result = a @ (int wb) b

EXPORT void NumLibCat(NUMLIB_NUMBER *a, NUMLIB_NUMBER *b,
NUMLIB_NUMBER *Result);
Concatenate value a with value b and place it in value pointed to by Result.
Result= a @ b

DK Libraries Manual

www.celoxica.com Page 23

2.2.3 Drop operations

EXPORT void NumLibDrop32(NUMLIB_NUMBER *a, unsigned long b,
unsigned long *Result)
Drop b bits from a and place it in 32-bit Result. Does not need to occupy the whole of
Result.
Result = a \\ b

EXPORT void NumLibDrop64(NUMLIB_NUMBER *a, unsigned long b,
uint64 *Result)
Drop b bits from a and place it in 64-bit Result. Does not need to occupy the whole of
Result.
Result = a \\ b

EXPORT void NumLibDrop(NUMLIB_NUMBER *a, unsigned long b,
NUMLIB_NUMBER *Result)
Drop b bits from a and place it in Result.
Result = a \\ b

2.2.4 Take operations

EXPORT void NumLibTake32(NUMLIB_NUMBER *a, unsigned long b,
unsigned long *Result)
Take b bits from a and place it in 32-bit Result. Does not need to occupy the whole of
Result.
Result= a <- b

EXPORT void NumLibTake64(NUMLIB_NUMBER *a, unsigned long b,
uint64 *Result)
Take b bits from a and place it in 64-bit Result. Does not need to occupy the whole of
Result.
Result= a <- b

EXPORT void NumLibTake(NUMLIB_NUMBER *a, unsigned long b,
NUMLIB_NUMBER *Result)
Take b bits from a and place it in Result.
Result= a <- b

2.2.5 Shift operations

EXPORT void NumLibLSL(NUMLIB_NUMBER *a, unsigned long b,
NUMLIB_NUMBER *Result)
Result = a << b

DK Libraries Manual

www.celoxica.com Page 24

EXPORT void NumLibLSR(NUMLIB_NUMBER *a, unsigned long b,
NUMLIB_NUMBER *Result)
Result = a >> b. Logical right-shift: the top bits are zero-padded.

EXPORT void NumLibASR(NUMLIB_NUMBER *a, unsigned long b,
NUMLIB_NUMBER *Result)
Result = a >> b Arithmetic right-shift: the top bits are sign-extended.

2.2.6 Bit selection operations

EXPORT void NumLibBitRange32(NUMLIB_NUMBER *a, unsigned long b,
unsigned long c, unsigned long *Result)
32-bit value pointed to by Result = a [b - 1 : c]

EXPORT void NumLibBitRange64(NUMLIB_NUMBER *a, unsigned long b,
unsigned long c, uint64 *Result)
64-bit value pointed to by Result= a [b - 1: c]

EXPORT void NumLibBitRange(NUMLIB_NUMBER *a, unsigned long b,
unsigned long c, NUMLIB_NUMBER *Result)
Result = a [b - 1: c]

2.2.7 Bit insertion operations

EXPORT void NumLibInsert32(unsigned long *a, unsigned long wa,
unsigned long s, NUMLIB_NUMBER *Result)
Insert bits of a into Result with LSB at position s. Width a is wa and a is <= 32 bits wide.

EXPORT void NumLibInsert64(uint64 *a, unsigned long wa,
unsigned long s, NUMLIB_NUMBER *Result)
Insert bits of a into Result with LSB at position s. Width a is wa and a is <= 64 bits wide.

EXPORT void NumLibInsert(NUMLIB_NUMBER *a, unsigned long s,
NUMLIB_NUMBER *Result)
Insert bits of a into Result with LSB at position s.

2.3 Comparison operations

These routines are supplied in the Numlib library to deal with values that are greater
than 64 bits wide. The numbers are stored in a NUMLIB_NUMBER structure and the
routines use this structure to operate on. You can use these routines in your plugin by
including the header file numlib.h.

include "numlib.h" (in C or C++ code for plugin)

DK Libraries Manual

www.celoxica.com Page 25

EXPORT unsigned long NumLibCompareEq(NUMLIB_NUMBER *a, char *b)
Return result of comparison of number a to string b

Equivalent to:

 NUMLIB_NUMBER *Temp;
 unsigned long Res;

 NumLibNew(&Temp, a->Width);
 NumLibSet(b, Temp);
 NumLibEquals(a, Temp, &Res);
 NumLibFree(Temp);
 return Res;

EXPORT void NumLibEquals(NUMLIB_NUMBER *a, NUMLIB_NUMBER *b, unsigned long
*Result)
Return result of (a == b)

EXPORT void NumLibNotEquals(NUMLIB_NUMBER *a, NUMLIB_NUMBER *b, unsigned
long *Result)
Return result of (a != b)

EXPORT void NumLibSGT(NUMLIB_NUMBER *a, NUMLIB_NUMBER *b, unsigned long
*Result)
Return result of (a > b) (a and b signed)

EXPORT void NumLibSGTE(NUMLIB_NUMBER *a, NUMLIB_NUMBER *b, unsigned long
*Result)
Return result of (a >= b) (a and b signed)

EXPORT void NumLibSLT(NUMLIB_NUMBER *a, NUMLIB_NUMBER *b, unsigned long
*Result)
Return result of (a < b) (a and b signed)

EXPORT void NumLibSLTE(NUMLIB_NUMBER *a, NUMLIB_NUMBER *b, unsigned long
*Result)
Return result of (a <= b) (a and b signed)

EXPORT void NumLibUGT(NUMLIB_NUMBER *a, NUMLIB_NUMBER *b, unsigned long
*Result)
Return result of (a > b) (a and b unsigned)

EXPORT void NumLibUGTE(NUMLIB_NUMBER *a, NUMLIB_NUMBER *b, unsigned long
*Result)
Return result of (a >= b) (a and b unsigned)

EXPORT void NumLibULT(NUMLIB_NUMBER *a, NUMLIB_NUMBER *b, unsigned long
*Result)
Return result of (a < b) (a and b unsigned)

DK Libraries Manual

www.celoxica.com Page 26

EXPORT void NumLibULTE(NUMLIB_NUMBER *a, NUMLIB_NUMBER *b, unsigned long
*Result)
Return result of (a <= b) (a and b unsigned)

EXPORT void NumLibCond(unsigned long *Condition, NUMLIB_NUMBER *a,
NUMLIB_NUMBER *b, NUMLIB_NUMBER *Result);
Return result of Condition ? a : b

Equivalent to:

 if (*Condition==0)
 {
 NumLibCopy(b, Result);
 }
 else
 {
 NumLibCopy(a, Result);
 }

2.4 File I/O and print: Numlib library

These routines are supplied in the Numlib library. You can use these routines in your
plugin by including the header file numlib.h. Files for use by numlib routines must use
the local NumlibFileOpen and NumlibFileClose routines

include "numlib.h" (in C or C++ code for plugin)

EXPORT void NumLibPrint(unsigned long Base, int Signed, NUMLIB_NUMBER *Sour
ce)
Print value pointed to by Source to standard output in Base (display as signed or
unsigned according to Signed). If Signed is non-zero, number is treated as signed (e.g.
"-1"). If Signed is zero, numbers will be treated as unsigned (e.g. "255")

EXPORT void NumLibPrintFile(FILE *FilePtr, unsigned long Base, int Signed,
NUMLIB_NUMBER *Source)
Write value pointed to by Source to file pointed to by FilePtr as above. FilePtr must
be a pointer returned by NumlibFileOpen.

EXPORT unsigned long NumLibPrintString(char *Buffer, unsigned long BufferLe
ngth,
unsigned long Base, int Signed, NUMLIB_NUMBER *SourceIn)
Write value pointed to by SourceIn as string to Buffer in given Base (length of Buffer
given in BufferLength). BufferLength is the maximum length that will be written. If
Signed is non-zero, number is treated as signed (e.g. "-1"). If Signed is zero,
numbers will be treated as unsigned (e.g. "255"). If you call the function with Buffer
set to NULL, it returns the maximum space required for the string.

DK Libraries Manual

www.celoxica.com Page 27

EXPORT FILE *NumLibOpenFile(char *filename, char *mode)
Open the file "filename" in mode "mode" and return a pointer to the file. Mode may be
one of r, w, a, r+, w+ or a+.

EXPORT void NumLibCloseFile(FILE *FilePtr)
Close the file pointed to by FilePtr .

EXPORT void NumLibWriteFile(NUMLIB_NUMBER *a, FILE *FilePtr)
Write value pointed to by a in binary format to file pointed to by FilePtr. FilePtr
must be a pointer returned by NumlibFileOpen.

EXPORT void NumLibReadFile(NUMLIB_NUMBER *a, FILE *FilePtr)
Read binary format number from a file pointed to by FilePtr and put the result in a.
FilePtr must be a pointer returned by NumlibFileOpen. This is the reverse of
NumLibWriteFile. The width of a must be correct. E.g.

NUMLIB_NUMBER *Fred;
FILE *FilePointer = NumLibReadFile("file.dat", "rb");
NumLibNew(&Fred, 453);
NumLibReadFile(Fred, FilePointer);

2.5 General number-handling routines

These routines are supplied in the Numlib library to deal with values that are greater
than 64 bits wide. The numbers are stored in a NUMLIB_NUMBER structure and the
routines use this structure to operate on. You can use these routines in your plugin by
including the header file numlib.h.

include "numlib.h" (in C or C++ code for plugin)

EXPORT void NumLibSet(char *a, NUMLIB_NUMBER *Result)
Set value pointed to by Result to the value of string a.

For example:

NUMLIB_NUMBER *Fred;
NumLibNew(&Fred, 453);
NumLibSet("1245216474847832194873205083294",
 Fred);

EXPORT void NumLibCopy(NUMLIB_NUMBER *Source, NUMLIB_NUMBER *Result)

Copy value pointed to by Source to value pointed to by Result.

EXPORT uint32 NumLibBits(NUMLIB_NUMBER *a)
Calculate the width of value pointed to by a and return number of bits (i.e. return the
width of a specified in NumLibNew).

DK Libraries Manual

www.celoxica.com Page 28

EXPORT void NumLibSetBit(NUMLIB_NUMBER *a, uint32 Bit, int Value)
Set bit Bit of variable pointed to by a to Value (0 or 1).

EXPORT int NumLibGetBit(NUMLIB_NUMBER *a, uint32 Bit)
Get value of bit Bit of variable pointed to by a.

EXPORT int32 NumLibGetLong(NUMLIB_NUMBER *a)
Convert value pointed to by a to 32 bits and return it. The least significant bits are used
and the result is right aligned (i.e. normal numbers not plugin style numbers).

EXPORT int64 NumLibGetLongLong(NUMLIB_NUMBER *a)

Convert value pointed to by a to 64 bits and return it. The least significant bits are used
and the result is right aligned (i.e. normal numbers not plugin style numbers).

2.6 Number allocation and de-allocation

These routines are supplied in the Numlib library to deal with values that are greater
than 64 bits wide. The numbers are stored in a NUMLIB_NUMBER structure and the
routines use this structure to operate on. You can use these routines in your plugin by
including the header file numlib.h.

include "numlib.h" (in C or C++ code for plugin)

EXPORT void NumLibNew(NUMLIB_NUMBER **Num, unsigned long Width)
Allocate Width space for value indirectly pointed to by Num. Provide pointer to space
acquired in Num.

For example:

NUMLIB_NUMBER *Fred;
NumLibNew(&Fred, 453);

EXPORT void NumLibFree(NUMLIB_NUMBER *Num)
Free allocated space for value pointed to by Num.

For example:

NumLibFree(Fred);

DK Libraries Manual

www.celoxica.com Page 29

3 Introduction to the Plugin API
The Plugin Application Program Interface (API) defines how to write plugins to connect to
the Handel-C simulator.

• A plugin is a program that runs on the PC and connects to a Handel-C clock or
interface. It can be written in any language which supports C-calling
conventions.

• The simulator expects the plugin to support various function calls and some
data structures. The simulator also has an error function that can be called by
the plugin (callback functions).

A numlib library is supplied to allow you to use numbers greater than 64 bits wide in your
plugin.

3.1 Function name retention in C++

When creating a DLL, some C++ compilers may use a modified version of the name that
a function has in a source file. To prevent this from happening you must either compile
your plugin as a C file, or, if you are compiling it as C++, you must use an extern
declaration to force the compiler to use the C linkage convention, which will leave
function names unchanged.

To specify that a function should be linked using the C linkage convention in C++, place
the string extern "C" immediately before the function definition. e.g.

#define dll __declspec(dllexport)

extern "C"
dll void PlugInOpen(HCPLUGIN_INFO *Info, unsigned long NumInst)
{
 /*
 * this function intentionally left blank,
 * initializing before the first simulation is run
 */
}

3.2 Specifying plugins in Handel-C source code

Plugins are specified in the Handel-C source code using the extlib, extinst and extfunc
specifications.

These specifications may be applied to clocks or interface definitions.

DK Libraries Manual

www.celoxica.com Page 30

Clock example:

set clock = external "P1"
 with {extlib="plugin.dll", extinst="instance0"};

Interface example

In the case of interface definitions, the specifications may be specified for individual ports
or for the interface as a whole. For example:

interface bus_in(unsigned 4 Input) BusName()
 with {extlib="plugin.dll",
 extinst="some instance string",
 extfunc="BusNameGetValue"};
interface bus_ts(unsigned 4 Input with {extlib="plugin.dll",
 extinst="some instance string",
 extfunc="BusNameGetValue"})
 BusName(unsigned 4 Output with {extlib="plugin.dll",
 extinst="some instance string",
 extfunc="BusNameSetValue"},
 unsigned 1 Enable with {extlib="plugin.dll",
 extinst="some instance string",
 extfunc="BusNameEnable"});

3.3 Simulator interface to plugins

Your plugin is identified to the simulator by:

• The name of the compiled .dll (the compiled plugin)

• The function calls that pass data between the plugin and the Handel-C
program

• The instance name

These data are passed to the simulator using the following with specifications:

extlib Specifies the name of the DLL. No default.

extinst Specifies an instance string. No default.

extfunc Specifies the function to call to pass data to
the plugin or get data from the plugin.
Defaults to PlugInSet() for passing data to
the plugin and PlugInGet() to get data from
the plugin.

Data widths in the simulator

The simulator uses 32-bit, 64-bit or arbitrary width representations for data as
appropriate. The Plugin API functions use pointers to long or unsigned long for data

DK Libraries Manual

www.celoxica.com Page 31

widths less than or equal to 32 bits, pointers to long long, unsigned long long, int64
or unsigned int64 for data widths greater than 32 bits but less than or equal to 64 bits,
and pointers to NUMLIB_NUMBER * for data widths greater than 64 bits.

Data stored in long, unsigned long, long long, unsigned long long or int64 and
unsigned int64 types is left-aligned. This means it if it is less than the full width of the
word, it will occupy the most significant bits in the word and not the least significant bits.
For example, 3 stored as a 3-bit wide number in a 32-bit word is represented as
0x60000000.

Where 32-bit or 64-bit widths are used, data is stored in the most significant bits.

3.4 Data structures

The C header file: plugin.h provides the data structure declarations required for any
plugin.

Structure passed on startup: HCPLUGIN_INFO

Callback data structure: HCPLUGIN_CALLBACKS

3.4.1 HCPLUGIN_INFO

The HCPLUGIN_INFO data structure passes essential information from the simulator to the
plugin on startup.

The data structure declarations required for plugins are provided in the C header file:
plugin.h.

typedef struct
{
 unsigned long Size;
 void *State;
 HCPLUGIN_CALLBACKS CallBacks;
} HCPLUGIN_INFO;

DK Libraries Manual

www.celoxica.com Page 32

Members

Size Set to sizeof(HCPLUGIN_INFO) as a corruption check.

State Simulator identifier which must be used in callbacks from
the plugin to the simulator. This value should be passed
in future calls to any function in the CallBacks
structure.

CallBacks Data structure containing pointers to the callback
functions from the plugin to the simulator.

3.4.2 Callback data structure

The HCPLUGIN_CALLBACKS structure is a member of the HCPLUGIN_INFO structure
passed to the PlugInOpen() function on startup. It contains pointers to the callback
functions. The only one currently available for use with the Plugin API is PlugInError.
You can call the PluginError function in your plugin to pass error messages to the
simulator

The data structure declarations required for plugins are provided in the C header file:
plugin.h.

HCPLUGIN_CALLBACKS

Size should be set to size of(HCPLUGIN_CALLBACKS).

typedef struct
{
 unsigned long Size;
 HCPLUGIN_ERROR_FUNC PluginError ;
 HCPLUGIN_GET_VALUE_COUNT_FUNC PluginGetValueCount;
 HCPLUGIN_GET_VALUE_FUNC PluginGetValue;
} HCPLUGIN_CALLBACKS;

3.5 Simulator to plugin functions

These functions are called by the simulator to send information to the plugin. They are
called when simulation begins and ends, and at points in the simulator clock cycle.

The plugin may act upon the call or do nothing. The plugin must implement the function
with identical parameters. PlugInSet and PlugInGet may be replaced by user-defined
names but the other function names must remain the same.

DK Libraries Manual

www.celoxica.com Page 33

When used Function call How often

First use of
simulator in DK
session

PlugInOpen once per plugin

Start of
simulation

PlugInInOpenInstance once per instance of
plugin

 PlugInOpenPort once per interface
port using the plugin

Simulator data
transfer

PlugInSet called when data on
a port sending data
TO the plugin
changes

 PlugInGet called whenever the
simulator wishes to
read data FROM the
plugin

Start of
simulated clock
cycle

PlugInStartCycle

Middle of cycle PlugInMiddleCycle called immediately
before the simulator
variables are
updated

End of cycle PlugInEndCycle

End of simulation PlugInClosePort once per interface
port using the plugin

 PlugInCloseInstance once per instance of
the plugin

End of DK
session

PlugInClose once per plugin

3.5.1 PlugInOpen

void PlugInOpen(HCPLUGIN_INFO *Info, unsigned long NumInst)

The simulator calls this function the first time that the plugin .dll is used in a DK
session. Each simulator used will make one call to this function for each plugin specified
in the source code.

DK Libraries Manual

www.celoxica.com Page 34

Info Pointer to structure containing simulator
callback information.

NumInst Number of instances of the plugin specified in
the source code. One call to
PlugInOpenInstance() is made for each of
these instances.

3.5.2 PlugInOpenInstance

void *PlugInOpenInstance(char *Name, unsigned long NumPorts)

This function is called each time you start a simulation. It is called once for each instance
of the plugin in the Handel-C source code. An instance is defined by the string used in
the extinst specification. An instance is considered unique if a unique string is used.
Thus the same instance may be used to connect a single PlugInOpenInstance call
(identified by the extinst string) to a number of ports.

Your implementation of the function should return a pointer used to identify the instance
in future calls from the simulator. This pointer may be used as you wish (for example, it
may point to a new class created when PlugInOpenInstance is called). The instance
pointer will be passed to future calls to PlugInOpenPort(), PlugInSet(), PlugInGet(),
PlugInStartCycle(), PlugInMiddleCycle(), PlugInEndCycle() and PlugInCloseInstance(). It
is not used by the simulator.

Name String specified in the extinst specification
in the source code.

NumPorts Number of ports associated with this
instance. One call to PlugInOpenPort() will be
made for each of these ports.

3.5.3 PlugInOpenPort

void *PlugInOpenPort(void *Instance, char *Name,
 int Direction, unsigned long Bits)

This function is called each time you start a simulation. It is called once for each interface
port associated with this plugin in the source code. The plugin should return a pointer to
a variable used to identify the port in future calls from the simulator. This value will be
passed to future calls to PlugInGet(), PlugInSet(), and PlugInClosePort().

The pointer returned by by PlugInOpenPort may be used as you wish. For example, it
may be used to point to a structure or a new class that is associated with that port. It
allows you to preserve information without using a global variable. It is not used by the
simulator

DK Libraries Manual

www.celoxica.com Page 35

Instance Value returned by the PlugInOpenInstance()
function.

Name Name of the port from the interface definition
in the source code.

Directio
n

Zero for a port transferring data from plugin
to simulator, non-zero for a port transferring
data from simulator to plugin.

Bits Width of port.

3.5.4 PlugInSet (default name)

void PlugInSet(void *Instance, void *Port,
 unsigned long Bits, void *Value)

This function is called by the simulator to pass data from simulator to plugin. You may
use any name you wish for this function (specified by extfunc) but the parameters must
remain the same. It is guaranteed to be called every time the value on the port changes
but may be called more often than that.

Instanc
e

Value returned by the PlugInOpenInstance()
function.

Port Value returned by the PlugInOpenPort()
function.

Bits Width of port.

Value Pointer to value. If Bits is less than or equal to
32 bits then this is a long * or unsigned long
*. If Bits is less than or equal to 64 bits then
this is an int64 * or unsigned int64 *. If
Bits is greater than 64 bits then this is a
NUMLIB_NUMBER **.

Data stored in long, unsigned long, int64 and
unsigned int64 types is left-aligned. This
means it occupies the most significant bits in
the word and not the least significant bits. For
example, 3 stored as a 3-bit wide number in a
32-bit word is represented as 0x60000000.

Functions which operate on NUMLIB_NUMBER
structures are provided in the Numlib library.

Where 32-bit or 64-bit widths are used, data is stored in the most significant bits.

DK Libraries Manual

www.celoxica.com Page 36

3.5.5 PlugInGet (default name)

void PlugInGet(void *Instance, void *Port,
 unsigned long Bits , void *Value)

This function is called by the simulator to get data from the plugin. You may use any
name you wish for this function (specified by extfunc) but the parameters must remain
the same. It is guaranteed to be called at least once every clock cycle but may be called
more often than that.

Instance Value returned by the PlugInOpenInstance()
function.

Port Value returned by the PlugInOpenPort()
function.

Bits Width of port.

Value Pointer to value. If Bits is less than or equal
to 32 bits then this is a long * or unsigned
long *. If Bits is less than or equal to 64 bits
then this is a long long (GNU type) *,
unsigned long long *, __int64 (Microsoft
specific type) * or unsigned __int64 *. If
Bits is greater than 64 bits then this is a
NUMLIB_NUMBER **.

Data stored in long, unsigned long, __int64
and unsigned __int64 types is left-aligned.
This means it occupies the most significant
bits in the word and not the least significant
bits. For example, 3 stored in a 3-bit wide
number in a 32-bit word is represented as
0x60000000.

Functions using NUMLIB_NUMBER structures are
provided in the Numlib library.

Where 32-bit or 64-bit widths are used, data must be stored in the most significant bits.
You must left-shift the number into the MSBs so it will be read correctly by the Handel-C
code.

3.5.6 PlugInStartCycle

void PlugInStartCycle(void *Instance)

This function is called by the simulator at the start of every simulation cycle.

Instanc
e

Value returned by the PlugInOpenInstance()
function.

DK Libraries Manual

www.celoxica.com Page 37

3.5.7 PlugInMiddleCycle

void PlugInMiddleCycle(void *Instance)

This function is called by the simulator immediately before any variables within the
simulator are updated. You may use it to perform any appropriate action.

Instanc
e

Value returned by the PlugInOpenInstance()
function.

3.5.8 PlugInEndCycle

void PlugInEndCycle(void *Instance)

This function is called by the simulator at the end of every simulation cycle. You may use
it to perform any appropriate action.

Instance Value returned by the
PlugInOpenInstance() function.

3.5.9 PlugInClosePort

void PlugInClosePort(void *Port)

The simulator calls this function when the simulator is shut down. It is called once for
every call made to PlugInOpenPort(). It is passed the pointer that you provided in
PlugInOpenPort(). This function allows you to perform any clean-up operations required
(for example, if you created a new class when PlugInOpenPort was called, you may now
destroy that class).

Port Pointer returned by the PlugInOpenPort()
function.

3.5.10 PlugInCloseInstance

void PlugInCloseInstance(void *Instance)

The simulator calls this function when the simulator is shut down. It is called once for
every call made to PlugInOpenInstance(). It allows you to perform any clean-up
operations required (for example, if you created a new class when PlugInOpenInstance
is called, you may now destroy that class).

DK Libraries Manual

www.celoxica.com Page 38

Instance Pointer returned by the PlugInOpenInstance()
function.

3.5.11 PlugInClose

void PlugInClose(void)

The simulator calls this function when the simulator is shut down. It is called once for
every call made to PlugInOpen().

3.6 Simulator callback error function

The simulator callback error function can be used by plugins to pass error messages to
the Handel-C program.

The plugin receives a pointer to the function in the Info parameter of the PlugInOpen()
function call made by the simulator at startup.

3.6.1 HCPLUGIN_ERROR_FUNC

The data structure declarations required for plugins are provided in the C header file:
plugin.h.

typedef void (*HCPLUGIN_ERROR_FUNC)(void *State, unsigned long Level,char
*Message);

The plugin should call this function to report information, warnings or errors. These
messages will be displayed during debug in the GUI Output window. In addition, an error
will stop the simulation.

State State member from the HCPLUGIN_INFO
structure passed to the PlugInOpen() function.

Level 0 Information
1 Warning
2 Error

Message Message string.

DK Libraries Manual

www.celoxica.com Page 39

4 Plugins supplied
The following plugins can be used to help simulate Handel-C programs. They are installed
in InstallDir\DK\Plugins.

DKShare.dll allows a port to be used by more
than one plugin

DKSync.dll synchronizes Handel-C simulations
so that they run at the correct rate
relative to one another

DKConnect.dll connects simulation ports together
so that data can be exchanged
between simulations

4.1 Connecting simulations together

DKConnect.dll allows you to connect two simulations together.

Example

To connect the simulations of two programs together, you use DKConnect.dll to connect
them both to the same instance. In the example below, data from program A is sent via
the port seg7_output.encode_out to the SS(7) instance of DKConnect.dll, and data is
read from that instance into program B via the port seg7_input.in.

// Program A interface
interface bus_out() seg7_output(unsigned 7 encode_out)
 with { extlib="DKConnect.dll",
 extinst="SS(7)", extfunc="DKConnectGetSet"};

// Program B interface
interface bus_in(unsigned 7 in) seg7_input()
 with {extlib="DKConnect.dll",
 extinst="SS(7)", extfunc="DKConnectGetSet"};

4.1.1 DKConnect.dll syntax

You connect a simulation to DKConnect.dll by specifying the following in the with
specification for a port:

extlib="DKConnect.dll",

extinst="terminalName (width) [[bitRange]]",

DK Libraries Manual

www.celoxica.com Page 40

extfunc="DKConnectGetSet"

Where:

terminalName is the name of the virtual terminal
that the port is connected to. It may
be any Handel-C identifier. All ports
connected to terminalName are
connected together. The terminal
will be created if it does not exist.

width is the width of the terminal in bits.
This must be the same for every
occurrence of the same terminal
name.

[bitRange] is optional. It specifies which bits of
the port are connected to which bits
of the terminal. If used, bitRange
must specify the connections for all
bits within the port. Port bits are
defined by their position within
bitRange; terminal bits are specified
by value. The first (leftmost) value
in bitRange represents the most
significant port bit, and the last
(rightmost) value the least
significant port bit. Terminal bits can
be specified as an inclusive range
[n:n], or a number. To leave a port
bit unconnected, specify X as its
terminal bit value.

 If bitRange is omitted, bit 0 of the
port will be connected to bit 0 of the
terminal, bit 1 to bit 1 etc.

4.1.2 DKConnect bit range

The string extinst = "connect1(16)[13,14,X,X,11:8]"

connects an 8-bit port to a 16-bit terminal connect1 with the cross-connections below.

DK Libraries Manual

www.celoxica.com Page 41

Port bits Terminal bits

0 8

1 9

2 10

3 11

4 X

5 X

6 14

7 13

4.2 Sharing a port between plugins

You can share a port between two or more plugins using DKShare.dll.

• Output ports can be shared to distribute the same data to multiple plugins.

• Input ports can be shared so that more than one plugin can feed data into the
program; for example, to simulate tri-state ports.

If more than one plugin provides data to the same port on the same clock cycle, the last
piece of data fetched is the one used.

If a plugin is used within a DKShare share record then all other instances of that plugin
must also occur within DKShare records. If you do not want to share another instance of
the plugin, then connect the plugin to the port in a single Share record.

4.2.1 DKShare.dll syntax

To share a port, the with specification of the port or interface must contain:

extlib = "DKShare.dll"

extfunc = "DKShareGetSet"

extinst = "ShareRecords "

The ShareRecords string consists of a Share record for every plugin which a port needs
to be connected to.

Share records

Share records have the following syntax:

Share={extlib=<lib-name>, extinst=<extinst-string>, extfunc=<func-name>}

DK Libraries Manual

www.celoxica.com Page 42

The items within angle brackets have the same meaning as they have when they occur
as the extlib, extinst and extfunc fields.

Possible values Default Meaning

extlib Name of a plugin .dll None Specify external
plugin for
simulator

extinst Instance name (with
optional parameters)

None Specify
simulation
instance used

extfunc Name of a function in the
plugin

PlugInSet or
PlugInGet
depending on port
direction

Specify external
function in the
simulator for this
port

interface bus_out() seg7_output(encode_out)
 with {extlib="DKShare.dll",
 extinst="Share={extlib=<7segment.dll>,
 extinst=<A>,
 extfunc=<PlugInSet>}
 Share={extlib=<DKConnect.dll>,
 extinst=<SS(7)>,
 extfunc=<DKConnectGetSet>}",
 extfunc="DKShareGetSet"
 };

4.3 Synchronizing multiple simulations

If you want to simulate multiple programs with different clock periods, you can use
DKSync.dll.

You inform the synchronizer of the relative clock rates of the programs. The synchronizer
then suspends each simulation until it can complete a cycle in step with other
simulations.

4.3.1 DKSync.dll syntax

To invoke DKSync.dll, you use the following with specifications in the set clock
statement:

DK Libraries Manual

www.celoxica.com Page 43

extlib="DKSync.dll"
extfunc="DKSyncGetSet"
extinst="clockPeriod"

The clockPeriod string must contain a positive integer that represents the period of the
clock. This is assumed to be in the same time units for all simulations that are to be
synchronized.

set clock = external "P1" with {extlib="DKSync.dll",
 extinst="100", extfunc="DKSyncGetSet"};

Using the same clock rate for more than one main function

If you want to set the same clock period for more than one main function, you need to
append the clockPeriod for extinst with a suffix, to prevent the same clock being built
for both main functions. For example:

set clock = external "a1" with {extlib="DKSync.dll",
 extinst="90:a1", extfunc="DKSyncGetSet"};
set clock = external "a2" with {extlib="DKSync.dll",
 extinst="90:a2", extfunc="DKSyncGetSet"};

(The a1 and a2 suffixes used for the extinst values do not need to be the same as the
clock pin names.)

4.4 Plugins example: using DKSync.dll

This example consists of two separate Handel-C projects: Project A and Project B.

Project A

• Increments a modulo-10 counter every cycle and outputs the value of the
counter to the 7segment.dll plugin

• Outputs the value of the counter to the terminal called SS(7) every cycle

Project B

• Increments a modulo-10 counter on alternate cycles and outputs the value of
the counter to the 7segment.dll plugin

• On alternate cycles, reads the value from the terminal called SS(7) and
outputs it to the 7segment.dll plugin

Project A’s cycles are 100 time units long. Project B’s cycles are 50 time units long. If
you ran a simulation of the project, you would need to step through Project B twice for
every step of project A.

To simulate the code in these source files, you would:

1. Create a workspace with two projects, Project A and Project B; one containing
each source code file.

DK Libraries Manual

www.celoxica.com Page 44

2. Create a new project with the project type System (select File>New>Project and
then click on the System icon).

3. In the System-type project, select Project>Dependencies and check Project A and
Project B as dependencies.

4. Select Build>Rebuild All.
5. Press Advance (Ctrl + F11) to start stepping through the simulation.

4.4.1 Plugins example: Project A source code

set clock = external "P1" with {extlib="DKSync.dll",
 extinst="100", extfunc="DKSyncGetSet"};

signal unsigned 7 encode_out;
interface bus_out() seg7_output(unsigned 7 output = encode_out)
 with {extlib="DKShare.dll",
 extinst="Share={extlib=<7segment.dll>,\
 extinst=<A>,\
 extfunc=<PlugInSet>}\
 Share={extlib=<DKConnect.dll>,\
 extinst=<SS(7)>,\
 extfunc=<DKConnectGetSet>}",
 extfunc="DKShareGetSet"
 };

//Define values to light 7-segment display from 0 - 9
rom unsigned 7 encoder[10] =
 {0x01,0x4f,0x12,0x06,0x4c,0x24,0x20,0x0f,0x00,0x04};

void main(void)
{
 unsigned 4 count;

 count = 0;

 while(1)
 {
 par
 {
 count = (count==9) ? 0 : (count+1);
 encode_out = encoder[count];
 }

DK Libraries Manual

www.celoxica.com Page 45

 }
}

4.4.2 Plugins example: Project B source code

set clock = external "P1" with {extlib="DKSync.dll",
 extinst="50", extfunc="DKSyncGetSet"};
signal unsigned 7 encode_out;

interface bus_out() seg7_output(unsigned 7 output = encode_out)
 with {extlib="7segment.dll",
 extinst="B",
 extfunc="PlugInSet"};

interface bus_in(unsigned 7 in) seg7_input()
 with {extlib="DKConnect.dll",
 extinst="SS(7)",
 extfunc="DKConnectGetSet"};

//Define values to light 7-segment display from 0 - 9
rom unsigned 7 encoder[10] =
 {0x01,0x4f,0x12,0x06,0x4c,0x24,0x20,0x0f,0x00,0x04};

void main(void)
{
 unsigned 4 count;

 count = 0;

 while(1)
 {
 par
 {
 count = (count==9) ? 0 : (count+1);
 encode_out = encoder[count];
 }
 encode_out = seg7_input.in;
 }

}

DK Libraries Manual

www.celoxica.com Page 46

4.5 Writing a plugin: example

This example shows how to invoke the simulator to plugin functions. It consists of three
files:

Example Handel-C file invokes the plugin through
interfaces

Example plugin file contains the plugin functions

C header file: plugin.h defines the plugin structures

4.5.1 C header file: plugin.h

The plugin.h header file contains declarations of the data structures required for any
plugin. The file is provided at installation in the directory InstallDir\DK\Sim\Include.

4.5.2 Writing plugins example: plugin file

This example shows the use of the functions provided and the need to include empty
functions.

DK Libraries Manual

www.celoxica.com Page 47

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <assert.h>

#include "numlib.h"
#include "plugin.h"

typedef struct
{
 char *fname; // Filename
 FILE *fptr;

 // Temporary storage for read or write value
 unsigned long value;

 // Port direction, 1 = simulator to plugin, 0 = plugin to simulator
 int Direction;
 int RisingEdge; // Set to 1 on a rising clock edge.
} InstanceInfo;

__declspec(dllexport)
void PlugInOpen(HCPLUGIN_INFO *Info, unsigned long NumInst)
{
}

__declspec(dllexport)
void *PlugInOpenInstance(char *Name, unsigned long NumPorts)
{
 // Allocate memory to store an InstanceInfo structure
 InstanceInfo *rval = malloc(sizeof(InstanceInfo));

 // Allocate memory to store the filename.
 rval->fname = malloc(strlen(Name) + 1);

 strcpy(rval->fname,Name);
 rval->RisingEdge = 0;

 return (void *)rval;
}

__declspec(dllexport)

DK Libraries Manual

www.celoxica.com Page 48

void *PlugInOpenPort(void *Instance_, char *Name,
 int Direction, unsigned long Bits)
{
 InstanceInfo *Instance = (InstanceInfo *)Instance_;

 if (strcmp(Name,"CLK"))
 {
 // This is not a clock port
 Instance->Direction = Direction;

 if (Direction)
 {
 // simulator to plugin, so open file for writing
 Instance->fptr = fopen(Instance->fname,"w");
 }
 else
 {
 // plugin to simulator; opens file and reads first value
 Instance->fptr = fopen(Instance->fname,"r");
 fscanf(Instance->fptr,"%d",&Instance->value);
 }

 return (void *)Instance;
 }
 else
 {
 // This is a clock port.
 Instance->fptr = NULL;

 return NULL;
 }
}

/*
* PlugInClock is a user-written function which is used instead of
* the default function of PlugInSet
*/
__declspec(dllexport)
void PlugInClock(void *Instance, void *Port_,
 unsigned long Bits, void *Value)
{
 static uint32 oldValue;

DK Libraries Manual

www.celoxica.com Page 49

 // Check for a rising clock edge.
 if (*(uint32 *)Value && !oldValue)
 {
 ((InstanceInfo *)Instance)->RisingEdge = 1;
 }

 oldValue = *(uint32 *)Value;
}

__declspec(dllexport)
void PlugInGet(void *Instance, void *Port_,
 unsigned long Bits, void *Value)
{
 InstanceInfo *Port = (InstanceInfo *)Port_;

 *(uint32 *)Value = Port->value;

}

__declspec(dllexport)
void PlugInSet(void *Instance, void *Port_, unsigned long Bits, void
*Value)
{
 InstanceInfo *Port = (InstanceInfo *)Port_;

 Port->value = *(uint32 *)Value;
}

__declspec(dllexport)
void PlugInStartCycle(void *Instance)
{
}

__declspec(dllexport)
void PlugInMiddleCycle(void *Instance)
{
}

__declspec(dllexport)
void PlugInEndCycle(void *Instance_)
{

DK Libraries Manual

www.celoxica.com Page 50

 InstanceInfo *Instance = Instance_;

 // If there has been a rising clock edge in this cycle…
 if (Instance->RisingEdge)
 {
 if (Instance->Direction)
 {
 // Write value to file.
 fprintf(Instance->fptr,"%d\n",Instance->value);
 }
 else
 {
 // Read next value from file.
 fscanf(Instance->fptr,"%d\n",&Instance->value);
 }

 Instance->RisingEdge = 0;
 }
}

__declspec(dllexport)
void PlugInClosePort(void *Port_)
{
 InstanceInfo *Port = (InstanceInfo *)Port_;

 if (Port)
 {
 fclose(Port->fptr);
 }
}

__declspec(dllexport)
void PlugInCloseInstance(void *Instance)
{
 free(((InstanceInfo *)Instance)->fname);
 free(Instance);
}

__declspec(dllexport)
void PlugInClose(void)
{
}

DK Libraries Manual

www.celoxica.com Page 51

4.5.3 Writing plugins example: Handel-C file

/*
 * User-written PlugInClock function replaces the
 * default name of PlugInSet here
 */

set clock = external "P1"
 with {extlib = "PluginDemo.dll",
 extinst = "test.txt", extfunc = "PlugInClock"};

unsigned 5 x;

#undef WRITING
#ifdef WRITING

interface bus_out() ob1(unsigned 5 out = x)
 with {extlib = "PluginDemo.dll",
 extinst = "test.txt", extfunc = "PlugInSet"};

void main(void)
{
 while(1)
 x++;
}

#else

interface bus_in(unsigned 5 in) ib1()
 with {extlib = "PluginDemo.dll",
 extinst = "test.txt", extfunc = "PlugInGet"};

void main(void)
{
 while(1)
 x = ib1.in;
}

#endif

DK Libraries Manual

www.celoxica.com Page 53

5 Index
A

allocation and de-allocation of numbers
.. 28

ANSI-C .. 20

wide numbers 20

arithmetic operations....................... 20

Numlib library 20

B

bit manipulation.........................15, 17

wide numbers 15, 17

bitwise operations 21

C

C language..................................... 20

wide numbers 20

C++..5

function name retention 29

using Handel-C in C++ code 5

wide numbers 5

C++ Wide Number Library..................5

casting ..6

wide numbers 6

Cat function 6, 15

clocks

specifying plugins 29

comparison operations in Numlib library
.. 24

concatenation15, 21

ANSI-C wide numbers 21

C++ wide numbers 15

conversion 9, 10

to signed 9

to unsigned 10

D

DKConnect.dll............................39, 40

DKShare.dll41

DKSync.dll 42, 43

Drop function..................................17

E

examples 5, 46

plugins 43, 46

Wide Number Library 5

extfunc 30, 41

extinst 30, 41

extlib....................................... 30, 41

F

functions..14

name retention in C++ 29

Wide Number Library 14

G

GetWidth10

H

HCNum..5

hcnum.h ..5

HCPLUGIN_CALLBACKS....................32

HCPLUGIN_ERROR_FUNC38

HCPLUGIN_INFO31

header files5

hcnum.h 5

numlib.h 20

plugin.h 46

I

include files 20, 46

Int ..7

class 7

constructors 7

methods 8

operators 18

int32 ...7, 9

int64 ...7, 9

ISO-C

DK Libraries Manual

www.celoxica.com Page 54

wide numbers 20

L

libraries 5, 20

Numlib 20

Wide Number library 5

N

Numlib library................................. 20

allocation and de-allocation 28

bit insertion 21

bit selection 21

bitwise operations 21

comparisons 24

concatenation 21

drop 21

file I/O 26

number handling 27

shift 21

take 21

numlib.dll....................................... 20

numlib.h .. 20

NUMLIB_NUMBER structure 20

NumLibAdd 20

NumLibAnd 21

NumLibASR 21

NumLibBitRange 21

NumLibBitRange32 21

NumLibBitRange64 21

NumLibBits..................................... 27

NumLibCat 21

NumLibCat32_64 21

NumLibCat32_n 21

NumLibCat64_32 21

NumLibCat64_64 21

NumLibCat64_n 21

NumLibCatn_32 21

NumLibCatn_64 21

NumLibCloseFile.............................. 26

NumLibCompareEq24

NumLibCond...................................24

NumLibCopy27

NumLibDivide20

NumLibDivMod................................20

NumLibDrop21

NumLibDrop32................................21

NumLibDrop64................................21

NumLibEquals24

NumLibFree....................................28

numlibgcc.lib20

NumLibGetBit27

NumLibGetLong27

NumLibGetLongLong........................27

NumLibInsert..................................21

NumLibInsert3221

NumLibInsert6421

NumLibLSL21

NumLibLSR.....................................21

NumLibMinus20

NumLibMod20

NumLibMultiply20

NumLibNot21

NumLibNotEquals24

NumLibOpenFile26

NumLibOr.......................................21

NumLibPrint26

NumLibPrintFile...............................26

NumLibPrintString26

NumLibReadFile26

NumLibSet27

NumLibSetBit..................................27

NumLibSGT24

NumLibSGTE24

NumLibSLT.....................................24

NumLibSLTE24

NumLibSubtract20

DK Libraries Manual

www.celoxica.com Page 55

NumLibTake 21

NumLibTake32................................ 21

NumLibTake64................................ 21

NumLibUGT.................................... 24

NumLibUGTE 24

NumLibULT..................................... 24

NumLibULTE................................... 24

NumLibWriteFile.............................. 26

NumLibXor 21

O

operators 18

overloaded 18

overloaded operators 18

P

Plugin API 29

errors 38

PlugInClose 38

PlugInCloseInstance 37

PlugInClosePort 37

PlugInEndCycle 37

PlugInGet 36

PlugInMiddleCycle 37

PlugInOpen 33

PlugInOpenInstance 34

PlugInOpenPort 34

PlugInSet 35

PlugInStartCycle 36

plugin.h ... 46

PlugInClose 38

PlugInCloseInstance 37

PlugInClosePort............................... 37

PlugInEndCycle 37

PlugInGet....................................... 36

PlugInMiddleCycle 37

PlugInOpen 33

PlugInOpenInstance 34

PlugInOpenPort............................... 34

plugins29, 39, 43, 46

attaching to clocks 29

C++ function names 29

error reporting 38

examples 43, 46

Plugin API 29

sharing ports 41

specifying 29

supplied plugins 39

writing 46

PlugInSet35

PlugInStartCycle36

ports ...41

sharing between plugins 41

Print ..12

PrintFile ...12

PrintString......................................11

R

ReadFile...14

S

shift operators18

non-standard 18

simulations

connecting 39, 40

synchronizing 42

using plugins 32

structures31

API data structures 31

synchronization...............................42

T

Take function..................................17

tutorials

plugins 46

types... 7, 20

Wide Number Library 5, 7

DK Libraries Manual

www.celoxica.com Page 56

U

UInt ..8

class 8

constructors 8

methods 8

operators 18

uint32 7, 10

uint64 7, 10

W

Wide Number Library 5, 20

ANSI-C wide numbers 20

classes 7, 8

examples 5

functions 14

methods 8, 10, 11, 12, 13, 14

types 5, 7

using 5

wide numbers............................. 5, 20

ANSI-C 20

bit manipulation 21

C++ 5

comparisons 24

printing 11, 12

reading 14

writing 13

WriteFile .. 13

