Celoxica

Platform Developer’s Kit

Fixed-point Library Manual

Fixed-point Library Manual

Celoxica

Celoxica, the Celoxica logo and Handel-C are trademarks of Celoxica Limited.

All other products or services mentioned herein may be trademarks of their respective
owners.

Neither the whole nor any part of the information contained in, or the product described
in, this document may be adapted or reproduced in any material form except with the
prior written permission of the copyright holder.

The product described in this document is subject to continuous development and
improvement. All particulars of the product and its use contained in this document are
given by Celoxica Limited in good faith. However, all warranties implied or express,
including but not limited to implied warranties of merchantability, or fitness for purpose,
are excluded.

This document is intended only to assist the reader in the use of the product. Celoxica
Limited shall not be liable for any loss or damage arising from the use of any information
in this document, or any incorrect use of the product.

The information contained herein is subject to change without notice and is for general
guidance only.

Copyright © 2004 Celoxica Limited. All rights reserved.
Authors: SB
Document number: RM-1021-1.0

Customer Support at http://www.celoxica.com/support/

Celoxica in Europe Celoxica in Japan Celoxica in the Americas

T: +44 (0) 1235 863 656 T: +81 (0) 45 331 0218 T: +1 800 570 7004

E: sales.emea@celoxica.com E: sales.japan@celoxica.com E:
sales.america@celoxica.com

www.celoxica.com

Fixed-point Library Manual Ce’oflca

Contents
L FIXED P OINT LIBRARY tutttuteetnaeseaeeneenetneeenserasesaseeraseseasneearnnes 4
d.0 FIXED-POINT NOTATION & ututeentnaeneneneateenseenseeaseeasneeaseeaseesrnees 4
1.2 FIXED-POINT LIBRARY HEADER FILE ..tuuueeteeeaeenaeeaeeneennaenaarennees 4
1.2.1 FIXED ISSIGNEDciititiie ettt et et ettt e e et e e e e e e aneeaaneenn 5
1.2.2 FIXED _ISUNSIGNED. ...ttt ettt ettt e ettt e e e e e e e e eeannees 6
1.3 FIXED-POINT STRUCTURES ..cutttuttateaeereaneennsenneenneeneenaareansennees 6
1.3.1 Signed fiXed-poiNt StrUCTUIESo e aaeeees 6
1.3.2 Unsigned fiXed-point STrUCTUNES......oiiii ittt e e eaaneean 10
1.4 FIXED POINT FUNCTIONS . .uutitete e eeaeeae e eaeeeeeenaeeaeeaaenaennenaennes 13
I = 0 /2N o 1 13
I =T /X o [14
I N T D= T /Y o T 15
1.4.4 FiXedCastSIgNedottt 16
1.4.5 FiXedCastUNSIGNEA ...ttt ettt et e e eea e e 17
I T =T | DT LY T 1 = 19
1.4.7 FiXedDIVUNSIGNEA ...ttt et aaaans 20
T B =T | o 21
e I = o | = T VAT A T | o 22
I 10 (= [23
0T I I (=T [I = 24
1.4.12 FIXEAINTWIALR . e e e eeeeeneaenn 25
1.4.13 FIXEALETESNITE .. e 26
I I =T | (=Y =Y 27
1.4.15 FiXedLiteralFromMINts ..o ettt 29
0 5 30 (= 1 30
I I (=T 1 R I 31
1.4.18 FIXEAMUILSIGNEAottt e et et e e e e e eanens 32
1.4.19 FiXedMUIUNSIGNEAeniii ettt et et e e e e eaannes 33
I 2 0 I (=0 | = o 34
I R (= o |) o 35
I A (=T 1 o) N 36
T B (=T [37
1.4.24 FiXedRIGhESNI T ... e 38
I R (=T 1] o 40
I 2 S T (=T o 10 = 1 = 41
I A (=T I 10] = 1o T 1 S 42
I N S B Y=o I 10 1 I 43
2 I =T 0)] 44
D2 1N 5T =N 45

\\

www.celoxica.com Page 1

Fixed-point Library Manual

Celoxica

Conventions

A number of conventions are used in this document. These conventions are detailed
below.

Warning Message. These messages warn you that actions may damage your hardware.

Handy Note. These messages draw your attention to crucial pieces of information.

Hexadecimal numbers will appear throughout this document. The convention used is
that of prefixing the number with '0x' in common with standard C syntax.

Sections of code or commands that you must type are given in typewriter font like this:
void main();

Information about a type of object you must specify is given in italics like this:
copy SourceFileName DestinationFileName

Optional elements are enclosed in square brackets like this:
struct [type_Name]

Curly brackets around an element show that it is optional but it may be repeated any
number of times.
string ::= "{character}"

www.celoxica.com

Fixed-point Library Manual

Celoxica

Assumptions & Omissions

This manual assumes that you:

e have used Handel-C or have the Handel-C Language Reference Manual
e are familiar with common programming terms (e.g. functions)
e are familiar with MS Windows

This manual does not include:

e instruction in VHDL or Verilog
e instruction in the use of place and route tools
e tutorial example programs. These are provided in the Handel-C User Manual

www.celoxica.com

Fixed-point Library Manual

Celoxica

1 Fixed-point library

The Fixed-point Library is installed as a library (.hc1) file with a header (.hch) file. The
library is not board or device specific.

The fixed.hch header file must be included at the start of your program. It provides
macro prototype declarations and preprocessor definitions. The functionality is stored in
the fixed.hcl library file that must be added to your project within the DK GUI. This is
done on the Project Settings dialog: Select the Linker tab and then type 'fixed.hc1 'in the
Object/library modules box.

Handel-C libraries and header files previously used the .1ib and .h extensions. These
are no longer supported.

To use the library, you must first define a structure to hold the fixed-point number.
Fixed-point numbers are represented as signed or unsigned structures.

1.1 Fixed-point notation

Mathematical notation (as in a decimal coinage system) in which the point separating
whole numbers and fractions is in a fixed position.

1.2 Fixed-point library header file

To use the fixed-point library the header file fixed.hch needs to be included at the top
of your program.

Previous versions of Handel-C used . h as the extension for header files. These are no
longer supported.

www.celoxica.com Page 4

Fixed-point Library Manual

Celoxica

Example

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_SIGNED(4, 4) MyFixed;

void main(void)

{
MyFixed fixedl, fixed?;
// Give the fixed-point number value -0.75
fixedl = FixedLiteral (FIXED_ISSIGNED, 4, 4, -1, 4);
// Shift this number right by 1 bit
fixed?2 = FixedRightShift(fixedl, 1);
}

1.2.1 FIXED_ISSIGNED

FIXED_ISSIGNED

Description

This is a constant defined as 1. It is used to specify that a fixed-point value is signed. It
does not define a FIXED_SIGNED structure.

Requirements
Header file: fixed.hch

Example

This definition is for use with FixedLiteral, FixedLiteralFromInts or casting:

#include "fixed.hch"

set clock = external "P1";

typedef FIXED_SIGNED(4, 4) MyFixedSigned;
typedef FIXED_UNSIGNED(4, 4) MyFixedUnsigned;
void main(void)

{

MyFixedSigned fixedl;

MyFixedUnsigned fixed?;

// Assign the value 1.25 to a signed fixed-point structure

fixedl = FixedLiteral (FIXED_ISSIGNED, 4, 4, 1.25);

// Cast to unsigned

fixed? = FixedCastSigned(FIXED_ISUNSIGNED, 4, 4, fixedl);
}

The result is still 1.25 but stored as a signed fixed-point number:

~

www.celoxica.com Page 5

Fixed-point Library Manual

Celoxica

fixed2.FixedIntBits = 1;
fixed2.FixedFracBits = 4;

1.2.2 FIXED_ISUNSIGNED

FIXED_ISUNSIGNED

Description

This is a constant defined as 0. It is used to specify that a fixed-point value is unsigned.
It does not define a FIXED_UNSIGNED structure.

Requirements

Header file: fixed.hch

Example

This definition is for use with FixedLiteral, FixedLiteralFromInts or casting:

#include <fixed.hch>

set clock = external "P1";

typedef FIXED_UNSIGNED(4, 8) MyFixed;
void main(void)

{
MyFixed fixedl;
// Assign the value 4.5 to a signed fixed-point structure
fixedl = FixedLiteral(FIXED_ISUNSIGNED, 4, 8, 4.5);

}

The result is 4.5 stored as a signed fixed-point number:

fixed2.FixedIntBits = 4;
fixed2.FixedFracBits = 128;

1.3 Fixed-point structures

1.3.1 Signed fixed-point structures

To use signed fixed-point numbers in the fixed-point library, first you must define a
structure with the following definition:

FIXED_SIGNED(intWidth, fracWidth) Fixed;

www.celoxica.com Page 6

Fixed-point Library Manual

Celoxica

This sets the width of the integer part of the number intWidth and the width of the
fraction part of the number fracWidth. These widths can be any positive number
including zero but must be compile time constants.

The definition creates a structure of the form:

struct {
signed intWidth FixedIntBits;
signed fracWidth FixedFracBits;
b

The integer part of the number has width intWidth and is held in:
Fixed.FixedIntBits
The fraction part of the number has width fracWidth and is held in:

Fixed.FixedFracBits

FIXED_SIGNED
FIXED_SIGNED(intWidth, fracWidth);
Arguments

intWidth Width of integer part of the fixed-
point structure. Must be positive and
a compile time constant.

fracWidt Width of fraction part of the fixed-
h point structure. Must be positive and
a compile time constant.

Return values

None.

Description

Defines a structure to hold a signed fixed-point number of the type required for the other
functions in the library. The structure takes the form:

struct
{
signed intWidth FixedIntBits;
signed fracWidth FixedFracBits;
s

www.celoxica.com Page 7

Fixed-point Library Manual

Celoxica

Requirements

Header fixed.hch
file:
Example

The suggested method of usage is to use this definition to create a type definition as
follows:

typedef FIXED_SIGNED(intWidth, fracWidth) MyFixed;
MyFixed fixedl, fixed?;

Converting positive numbers to signed fixed-point structures

To convert a positive number to a fixed point structure you must define a FIXED_SIGNED
structure to contain the number, and then assign it values using the FixedLiteral function.

Example

This shows how to define a 6-bit fixed-point number with 4 integer bits and 2 fraction
bits, and then assign the value 3.5 to it.

#include <fixed.hch>

set clock = external "P1";

// Define a name for the structure type
typedef FIXED_SIGNED(4, 2) MyFixed;
void main(void)

{

// Declare variable of type

MyFixed fixedNumber;

// Give fixedNumber the value 3.5

fixedNumber = FixedLiteral (FIXED_ISSIGNED, 4, 2, 3.5);
}

This is stored as

fixedNumber.FixedIntBits = 3
fixedNumber.FixedFracBits = 2

Explanation

FixedLiteral(isSigned , intWidth , fracWidth , floatConst);

returns a signed fixed-point number if isSigned is 1 or an unsigned fixed-point number
if isSigned is 0. The number has the value floatConst with an integer part of width
intWidth and a fraction part of width fracWidth.

The FixedLiteral function

e Sets Fixed.fixedIntBits to the value of the integer part of the number.
e Finds 2 to the power of the number of fraction bits, fracWidth.

~

www.celoxica.com Page 8

Fixed-point Library Manual

Celoxica

e Multiplies this with the decimal part of the number.
¢ Rounds to the nearest integer and set Fixed.FixedFracBits to this value.

For a number a.b the formulae are:

e Fixed.FixedIntBits =a
e Fixed.FixedFracBits = integer part of (b x 2facWidthy

Converting negative numbers to signed fixed-point structures

To convert a negative number to a fixed point structure you must define a
FIXED_SIGNED structure to contain the number, and then assign it values using the
FixedLiteral function.

Example

This shows how to define an 8 bit fixed-point number with 4 integer bits and 4 fraction
bits, and then assign the value —3.5 to it.

#include <fixed.hch>

set clock = external "P1";

// Define a name for the structure type
typedef FIXED_SIGNED(4, 4) MyFixed;
void main(void)

{
// Declare variable of type
MyFixed fixedNumber;
// Give fixedNumber the value -3.5
fixedNumber = FixedLiteral(FIXED_ISSIGNED, 4, 4, -3.5);
}

This is stored as

fixedNumber.FixedIntBits = -4
fixedNumber.FixedFracBits = 8

Explanation

FixedLiteral(isSigned , intWidth , fracWidth , floatConst);

returns a signed fixed-point number if isSigned is 1 or an unsigned fixed-point number
if isSigned is 0. The number has the value floatConst with an integer part of width
intWidth and a fraction part of width fracWidth.

The FixedLiteral function

e Sets Fixed.FixedIntBits to the value of the integer part of the number.

e Finds 2 to the power of the number of fraction bits, fracWidth, takes the
decimal part of the number from 1 and multiplies them together

~

www.celoxica.com Page 9

Fixed-point Library Manual

Celoxica

e Rounds to the nearest integer and set Fixed.FixedFracBits to this value.
e If Fixed.FixedFracBits is zero then does not change Fixed.FixedIntBits.
e If Fixed.FixedFracBits is not zero takes 1 from Fixed.FixedIntBits.

For a number a.b the formulae are:

e Fixed.FixedFracBits = integer part of ((1-b) x 2TacWwidthy
e |If Fixed.FixedFracBits is zero: Fixed.FixedIntBits = a
e Elseif Fixed.FixedFracBits is not zero: Fixed.FixedIntBits = a-1

1.3.2 Unsigned fixed-point structures

To use unsigned fixed-point numbers in the fixed-point library, first you must define a
structure with the following definition:

FIXED_UNSIGNED(intWidth, fracWidth) Fixed;

This sets the width of the integer part of the number intWidth and the width of the
fraction part of the number fracWidth. These widths can be any positive number
including zero but must be compile time constants.

The definition creates a structure of the form:

struct {
unsigned intWidth FixedIntBits;
unsigned fracWidth FixedFracBits;
b
The integer part of the number has width intWidth and is held in
Fixed.FixedIntBits
The fraction part of the number has width fracWidth and is held in:

Fixed.FixedFracBits

FIXED_UNSIGNED
FIXED_UNSIGNED(intWidth, fracWidth);

www.celoxica.com Page 10

Fixed-point Library Manual

Celoxica

Arguments

intWidth Width of integer part of the fixed-point
structure. Must be positive and a compile
time constant.

fracWidth Width of fraction part of the fixed-point
structure. Must be positive and a compile
time constant.

Return values

None.

Description

Defines a structure to hold an unsigned fixed-point number of the type required for the
other functions in the library. The structure takes the form:

struct

{
unsigned intWidth FixedIntBits;
unsigned fracWidth FixedFracBits;

b

Requirements
Header file: fixed.hch

Example

The suggested method of usage is to use this definition to create a type definition as
follows:

typedef FIXED_UNSIGNED(intWidth, fracWidth) MyFixed;
MyFixed fixedl, fixed?Z;

Converting unsigned numbers to unsigned fixed-point structures

To convert a number to an unsigned fixed point structure you must define a
FIXED_UNSIGNED structure to contain the number, and then assign it values using the
FixedLiteral function.

Example

To define an 8 bit fixed-point number with 4 integer bits and 4 fraction bits, and then
assign the value 10.5 to it.

www.celoxica.com Page 11

Fixed-point Library Manual

Celoxica

#include <fixed.hch>

set clock = external "P1";

// Define a name for the structure type
typedef FIXED_UNSIGNED(4, 4) MyFixed;
void main(void)

{

// Declare variable of type

MyFixed fixedNumber;

// Give fixedNumber the value 10.5

fixedNumber = FixedLiteral(FIXED_ISUNSIGNED, 4, 4, 10.5);
}

This is stored as:

fixedNumber.FixedIntBits = 10
fixedNumber.FixedFracBits = 8

Explanation

FixedLiteral(isSigned , intWidth , fracWidth , floatConst);

returns a signed fixed-point number if isSigned is 1 or an unsigned fixed-point number
if isSigned is 0. The number has the value floatConst with an integer part of width
intWidth and a fraction part of width fracWidth.

The FixedLiteral function

e Sets Fixed.fixedIntBits to the value of the integer part of the number.

e Finds 2 to the power of the number of fraction bits, fracWidth.

e Multiplies this with the decimal part of the number.

e Rounds to the nearest integer and set Fixed.FixedFracBits to this value.

For a number a.b the formulae are:

e Fixed.FixedIntBits =a
o Fixed.FixedFracBits = integer part of (b x 2wt

www.celoxica.com Page 12

Fixed-point Library Manual

Celoxica

1.4 Fixed point functions

1.4.1 FixedAbs

FixedAbs(Fixed);
Arguments

Fixe Fixed-point structure of signed type
d and any width

Return values

Fixed-point number of signed type and same width as Fixed.

Description

Returns the absolute value of Fixed. The number returned is of the same width as Fixed
so any bits outside this width are lost. Signed integers use 2’s complement
representation in Handel-C so

abs(max positive number) < abs(min negative number)
This means the function gives the result:

abs(min negative number) = min negative number.

Requirements
Header file: fixed.hch
Library file: fixed.hcl
Example

This example shows finding the absolute value of a FIXED_SIGNED(4, 4).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_SIGNED(4, 4) MyFixed;

void main(void)

{
MyFixed fixedl, fixed?2;
// Give the fixed-point number value -7.25
fixedl = FixedLiteral (FIXED_ISSIGNED, 4, 4, -7.25);
// Find the absolute value of this number
fixed?2 = FixedAbs(fixedl);
}

The result is 7.25. This is stored as:

www.celoxica.com Page 13

Fixed-point Library Manual

Celoxica

fixed2.FixedIntBits = 7;
fixed2.FixedFracBits = 4;

1.4.2 FixedAdd

FixedAdd(Fixedl, Fixed?);

Arguments

Fixedl Fixed-point structure of any type and
width

Fixed? Fixed-point structure of the same type
and width

Return values

Fixed-point number of the same type and width as Fixedl and FixedZ.

Description

Returns Fixedl added to FixedZ?. The number returned is of the same width as FixedlI
so any bits outside this width are lost.

Requirements

Header file: fixed.hch

Library file: fixed.hcl

Example

This example shows addition on two FIXED_UNSIGNED(4, 8).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_UNSIGNED(4, 8) MyFixed;

void main(void)

{
MyFixed fixedl, fixed2, fixed3;
// Give the fixed-point number value 3.25
fixedl = FixedLiteralFromInts(FIXED_ISUNSIGNED, 4, 8, 3, 64);
// Give the fixed-point number value 4.75
fixed?2 = FixedLiteralFromInts(FIXED_ISUNSIGNED, 4, 8, 4, 192);
// Add the numbers together
fixed3d = FixedAdd(fixedl, fixed?2);
}

The result is 8. This is stored as:

www.celoxica.com Page 14

Fixed-point Library Manual

Celoxica

fixed3.FixedIntBits = 8;
fixed3.FixedFracBits = 0;

1.4.3 FixedAnd

FixedAnd(Fixedl, Fixed?);

Arguments

Fixed Fixed-point structure of any type
1 and width

Fixed Fixed-point structure of the same
2 type and width

Return values

Fixed-point number of the same type and width as FixedI and FixedZ2.

Description
Returns bitwise AND of Fixedl and Fixed?.

Requirements

Header file: fixed.hch

Library file: fixed.hcl

Example

This example finds the bitwise AND of two FIXED_UNSIGNED(O, 16).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_UNSIGNED(O, 16) MyFixed;

void main(void)

{
MyFixed fixedl, fixed2, fixed3;
// Give the fixed-point number value 0.02734375
fixedl = FixedLiteralFromInts(FIXED_ISUNSIGNED, O, 16, 0, 1792);
// Give the fixed-point number value 0.234375
fixed?2 = FixedLiteralFromInts(FIXED_ISUNSIGNED, 0, 16, 0, 15360);
// And these numbers
fixed3d = FixedAnd(fixedl, fixed?2);
}

The result is 0.015625. This is stored as:

www.celoxica.com Page 15

Fixed-point Library Manual

Celoxica

fixed3.FixedIntBits = 0;
fixed3.FixedFracBits = 1024;

1.4.4 FixedCastSigned

FixedCastSigned(isSigned, intWidth, fracWidth, Fixed);

If you need to cast from a signed number to a fixed-point signed or fixed-point unsigned
number, use FixedCastSigned. If you need to cast from an unsigned number, use
FixedCastUnsigned.

Arguments

isSigned Compile time constant to indicate the
type of fixed-point structure.
FIXED_ISSIGNED represents signed
and FIXED_ISUNSIGNED represents
unsigned.

intWidth Width of integer part of the fixed-
point structure. Must be positive and
a compile time constant.

fracWidt Width of fraction part of the fixed-
h point structure. Must be positive and
a compile time constant.

Fixed Fixed-point structure of signed type
and any width.

Return values

Fixed-point structure of the type and width specified.

Description

Casts any signed fixed-point number to the type and width specified. Any bits added will
be sign extended and any bits lost will be truncated.

Requirements

Header fixed.hch
file:

Library fixed.hcl
file:

Example

This example casts a FIXED_SIGNED(4, 4) to a FIXED_UNSIGNED(4, 4).

#include <fixed.hch>

www.celoxica.com Page 16

Fixed-point Library Manual

Celoxica

set clock = external "P1";
typedef FIXED_SIGNED(4, 4) MyFixedSigned;
typedef FIXED_UNSIGNED(4, 4) MyFixedUnsigned;

void main(void)
{

MyFixedSigned fixedl;

MyFixedUnsigned fixed?;

// Assign the value 7.125

fixedl = FixedLiteral (FIXED_ISSIGNED, 4, 4, 7.125);

// Cast to unsigned

fixed?2 = FixedCastSigned(FIXED_ISUNSIGNED, 4, 4, fixedl);
}

The result is still 7.125 but stored as a signed fixed-point number:

fixed2.FixedIntBits = 7;
fixed2.FixedFracBits = 2;

1.4.5 FixedCastUnsigned

FixedCastUnsigned(isSigned, intWidth, fracWidth, Fixed);

If you need to cast from an unsigned number to a fixed-point signed or fixed-point
unsigned number, use FixedCastUnsigned. If you need to cast from a signed number,
use FixedCastSigned.

Arguments

isSigned Compile time constant to indicate the
type of fixed-point structure.
FIXED_ISSIGNED represents signed
and FIXED_ISUNSIGNED represents
unsigned.

intWidth Width of integer part of the fixed-point
structure. Must be positive and a
compile time constant.

fracWidt Width of fraction part of the fixed-point
h structure. Must be positive and a
compile time constant.

Fixed Fixed-point structure of unsigned type
and any width.

Return values

Fixed-point structure of the type and width specified.

www.celoxica.com Page 17

Fixed-point Library Manual

Celoxica

Description

Casts any unsigned fixed-point number to the type and width specified. Any bits added
will 0 and any bits lost will be truncated.

Requirements

Header fixed.hch
file:

Library fixed.hcl
file:

Example

This example casts a FIXED_UNSIGNED(4, 4) toa FIXED_UNSIGNED(16, 16).

#include <fixed.hch>

set clock = external "P1";

typedef FIXED_UNSIGNED(4, 4) MyFixedSmall;
typedef FIXED_UNSIGNED(16, 16) MyFixedBig;

void main(void)
{

MyFixedSmall fixedl;

MyFixedBig fixed?2;

// Assign the value 15.5

fixedl = FixedLiteral (FIXED_ISUNSIGNED, 4, 4, 15.5);

// Cast to the larger width

fixed?2 = FixedCastUnsigned(FIXED_ISUNSIGNED, 16, 16, fixedl);
}

The result is still 15.5 but stored as a fixed-point number with a different width:

fixed2.FixedIntBits = 15;
fixed2.FixedFracBits = 32768;

www.celoxica.com Page 18

Fixed-point Library Manual

Celoxica

1.4.6 FixedDivSigned

FixedDivSigned(Fixedl, Fixed?);
Arguments

Fixedl Fixed-point structure of signed type
and any width

Fixed2 Fixed-point structure of signed type
and the same width

Return values

Fixed-point number of signed type and the same width as Fixedl and Fixed?.

Description

Divisor for signed fixed-point numbers only. Returns Fixedl divided by FixedZ2. The
number returned is of the same width as Fixedl so any bits outside this width are lost.
Requirements

Header file: fixed.hch

Library file: fixed.hcl

Example

This example shows division on FIXED_SIGNED(4, 4).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_SIGNED(4, 4) MyFixed;

void main(void)

{
MyFixed fixedl, fixed2, fixed3;
// Give the fixed-point number value -5
fixedl = FixedLiteral(FIXED_ISSIGNED, 4, 4, -5);
// Give the fixed-point number value 4
fixed2 = FixedLiteral(FIXED_ISSIGNED, 4, 4, 4);
// Divide these numbers
fixed3 = FixedDivSigned(fixedl, fixed?2);
}

The result is 1.25. This is stored as:

fixed3.FixedIntBits = -2;
fixed3.FixedFracBits = -4;

www.celoxica.com Page 19

Fixed-point Library Manual

Celoxica

1.4.7 FixedDivUnsigned

FixedDivUnsigned(Fixedl, FixedZ?);
Arguments

Fixed Fixed-point structure of unsigned type
1 and any width

Fixed Fixed-point structure of unsigned type
2 and the same width

Return values

Fixed-point number of unsigned type and the same width as FixedI and FixedZ.

Description

Divisor for unsigned fixed-point numbers only. Returns FixedI divided by FixedZ. The
number returned is of the same width as FixedI so any bits outside this width are lost.

Requirements

Header fixed.hch
file:

Library fixed.hcl
file:

Example

This example shows division on FIXED_UNSIGNED(4, 4).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_UNSIGNED(4, 4) MyFixed;

void main(void)
{
MyFixed fixedl, fixed2, fixed3;
// Give the fixed-point number value 15
fixedl = FixedLiteral(FIXED_ISUNSIGNED, 4, 4, 15);
// Give the fixed-point number value 2
fixed2 = FixedLiteral(FIXED_ISUNSIGNED, 4, 4, 2);
// Multiply these numbers
fixed3d = FixedDivUnsigned(fixedl, fixed?2);

by

The result is 7.5. This is stored as:

fixed3.FixedIntBits = 7;
fixed3.FixedFracBits = 8;

www.celoxica.com Page 20

Fixed-point Library Manual

Celoxica

1.4.8 FixedEq

FixedEq(Fixedl, Fixed?);

Arguments

Fixed Fixed-point structure of any type
1 and width

Fixed Fixed-point structure of the same
2 type and width

Return values

Single bit wide integer with 0 as false and 1 as true.

Description

Returns true if FixedI equals Fixed?.

Requirements

Header file: fixed.hch

Library file: fixed.hcl

Example

This example tests the equality of two FIXED_UNSIGNED(16, 16).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_UNSIGNED(16, 16) MyFixed;

void main(void)

{
unsigned int 1 result;
MyFixed fixedl, fixed?2;
// Give the fixed-point number value 1000.046875
fixedl = FixedLiteralFromInts(FIXED_ISUNSIGNED, 16, 16, 1000, 3072);
// Give the fixed-point number value 1000.03125
fixed?2 = FixedLiteralFromInts(FIXED_ISUNSIGNED, 16, 16, 1000, 2048);
// Are these numbers equal?
result = FixedEq(fixedl, fixed2);
}

fixedl is not equal to fixedZ so:

result = 0;

www.celoxica.com Page 21

Fixed-point Library Manual

Celoxica

1.4.9 FixedFracWidth

FixedFracWidth(Fixed);
Arguments

Fixe Fixed-point structure of any type
d and width

Return values

Compile time constant integer.

Description

Returns width of the fraction part of Fixed.

Requirements

Header fixed.hch
file:

Library fixed.hcl
file:

Example

This example finds the width of the fraction part of a FIXED_SIGNED(16, 8).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_SIGNED(16, 8) MyFixed;

void main(void)

{

unsigned int 5 result;

MyFixed fixed;

// Find the width

result = FixedFracWidth(fixed);
}

The result is 8.

www.celoxica.com Page 22

Fixed-point Library Manual

Celoxica

1.4.10 FixedGT

FixedGT(Fixedl, Fixed?);

Arguments

Fixed Fixed-point structure of any type
1 and width

Fixed Fixed-point structure of the same
2 type and width

Return values

Single bit wide integer with O as false and 1 as true.

Description

Returns true if FixedI is greater than Fixed?Z.

Requirements

Header fixed.hch
file:

Library fixed.hcl
file:

Example

This example tests for greater than of two FIXED_SIGNED(4, 16).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_SIGNED(4, 16) MyFixed;

void main(void)

{
unsigned int 1 result;
MyFixed fixedl, fixed?;
// Give the fixed-point number value 5.125
fixedl = FixedLiteral(FIXED_ISSIGNED, 4, 16, 5.125);
// Give the fixed-point number value -5.125
fixed? = FixedLiteral (FIXED_ISSIGNED, 4, 16, -5.125);
// Is fixedl > fixed?
result = FixedGT(fixedl, fixed?);
}

fixedl is greater than fixed2 so:

result = 1;

www.celoxica.com

Page 23

Fixed-point Library Manual

Celoxica

1.4.11 FixedGTE

FixedGTE(Fixedl, Fixed?);

Arguments

Fixedl Fixed-point structure of any type and
width

Fixed2 Fixed-point structure of the same type
and width

Return values

Single bit wide integer with O as false and 1 as true.

Description

Returns true if Fixedl is greater than or equal to FixedZ2.

Requirements

Header fixed.hch
file:

Library fixed.hcl
file:

Example

This example tests for greater than or equal to of two FIXED_SIGNED(4, 16).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_SIGNED(4, 16) MyFixed;

void main(void)

{
unsigned int 1 result;
MyFixed fixedl, fixed?2;
// Give the fixed-point number value 5.125
fixedl = FixedLiteral(FIXED_ISSIGNED, 4, 16, 5.125);
// Give the fixed-point number value -5.125
fixed2 = FixedLiteral (FIXED_ISSIGNED, 4, 16, -5.125);
// Is fixedl > fixed?2
result = FixedGTE(fixedl, fixed2);
}

fixedl is greater than or equal to fixedZ so:

result = 1;

www.celoxica.com Page 24

Fixed-point Library Manual

Celoxica

1.4.12 FixedIntWidth

FixedIntWidth(Fixed);
Arguments

Fixed Fixed-point structure of any type
and width

Return values

Compile time constant integer.

Description

Returns width of the integer part of Fixed.

Requirements

Header fixed.hch
file:

Library fixed.hcl
file:

Example

This example finds the width of the integer part of a FIXED_SIGNED(16, 8).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_SIGNED(16, 8) MyFixed;

void main(void)

{

unsigned int 5 result;

MyFixed fixed;

// Find the width

result = FixedIntWidth(fixed);
}

The result is 16.

www.celoxica.com Page 25

Fixed-point Library Manual

Celoxica

1.4.13 FixedLeftShift

FixedLeftShift(Fixed, Shift);

Arguments

Fixe Fixed-point structure of any type and width
d

Shif Number of bits to shift left by

t

Return values

Fixed-point number of same type and width as Fixed.

Description

Returns Fixed shifted left by Shift number of bits. The number returned is of the same
width as Fixed so any bits shifted outside this width are lost.

The Shift expression must be unsigned and of width
shiftWidth = log2ceil (intWidth + fracWidth + 1)

where intWidth is width(Fixed.FixedIntBits) and fracWidth is
width(Fixed.FixedFracBits) (as defined in FIXED_SIGNED and FIXED_UNSIGNED.)

Shift has the range: 0 to exp2 (shiftWidth) - 1.

If Shift is O no shift occurs. Shifts of (intWidth + fracWidth) or greater shift all the
bits out of Fixed and produce a zero result.

Requirements

Header file: fixed.hch
Library file: fixed.hcl
Example

This example shows left shifting on a FIXED_UNSIGNED(8, 4). The integer part has value
9 and the fraction part has value %5.

www.celoxica.com Page 26

Fixed-point Library Manual

Celoxica

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_UNSIGNED(8, 4) MyFixed;

void main(void)

{
MyFixed fixedl, fixed?;
// Give the fixed-point number value 9.5
fixedl = FixedLiteralFromInts(FIXED_ISUNSIGNED, 8, 4, 9, 8);
// Shift this number left by 2 bits
fixed?2 = FixedlLeftShift(fixedl, 2);
}

The result is 39. This is stored as:

fixed2.FixedIntBits = 38;
fixed2.FixedFracBits = 0;

1.4.14 FixedLiteral

FixedLiteral(isSigned, intWidth, fracWidth, floatConst);
Arguments

isSigne Single bit wide unsigned integer

d with FIXED_ISSIGNED denoting
signed and FIXED_ISUNSIGNED
indicating unsigned. Must be a
compile time constant.

intWidt Width of integer part of the fixed-

h point structure. Must be positive
and a compile time constant.

fracWid Width of fraction part of the fixed-
th point structure. Must be positive
and a compile time constant.

floatCo Floating-point constant value to
nst assign value of fixed-point
structure.

Return values

Fixed-point number of the type and width specified.

Description

Returns a signed fixed-point number if isSigned is FIXED_ISSIGNED or an unsigned
fixed-point number if isSigned is FIXED_ISUNSIGNED. The number has the value

~

www.celoxica.com Page 27

Fixed-point Library Manual

Celoxica

floatConst with an integer part of width intWidth and a fraction part of width
fracWidth.

Requirements

Header fixed.hch
file:
Library fixed.hcl
file:

Example 1:
This example assigns values to a FIXED_SIGNED(16, 8).

typedef FIXED_SIGNED(16, 8) MyFixed;
void main(void)

{

MyFixed fixed;

// Assign the value 32767.5

fixed = FixedLiteral (FIXED_ISSIGNED, 16, 8, 32767.5);
}

This gives the structure the values:
fixed.FixedIntBits = 32767;
fixed.FixedFracBits = 128;

Example 2:

This example assigns values to a FIXED_UNSIGNED(16, 8).

typedef FIXED_UNSIGNED(16, 8) MyFixed;
void main(void)

{

MyFixed fixed;

// Assign the value 32767.5

fixed = FixedLiteral (FIXED_ISUNSIGNED, 16, 8, 32767.5);
}

This gives the structure the values:

fixed.FixedIntBits = 37267;
fixed.FixedFracBits = 128;

www.celoxica.com Page 28

Fixed-point Library Manual

Celoxica

1.4.15 FixedLiteralFromlInts

FixedLiteralFromInts(isSigned, intWidth, fracWidth,
intBits, fracBits);

Arguments

isSigne Single bit wide unsigned integer with

d FIXED_ISSIGNED denoting signed and
FIXED_ISUNSIGNED indicating
unsigned. Must be a compile time
constant.

intWidt Width of integer part of the fixed-point
h structure. Must be positive and a
compile time constant.

fracWid Width of fraction part of the fixed-
th point structure. Must be positive and a
compile time constant.

intBits Value to set to the integer part of the
fixed-point structure. Must be of width

intWidth.
fracBit Value to set to the fraction part of the
S fixed-point structure. Must be of width
fracWidth.

Return values

Fixed-point number of the type and width specified.

Description

Returns a signed fixed-point number if isSigned is 1 or an unsigned fixed-point number
if isSigned is 0. The number has an integer part intBits of width intWidth and a
fraction part fracBits of width fracWidth.

Requirements

Header fixed.hch
file:
Library fixed.hcl
file:

Example 1:

This example assigns values to a FIXED_SIGNED(16, 8).

www.celoxica.com Page 29

Fixed-point Library Manual

Celoxica

typedef FIXED_SIGNED(16, 8) MyFixed;
void main(void)

{

MyFixed fixed;

// Assign the value 32767.5

fixed = FixedLiteralFromInts(FIXED_ISSIGNED, 16, 8, 32767, 128);
b

This gives the structure the values:

fixed.FixedIntBits = 32767;
fixed.FixedFracBits = 128;

Example 2:

This example shows assigns values to a FIXED_UNSIGNED(16, 8).

typedef FIXED_UNSIGNED(16, 8) MyFixed;
void main(void)

{

MyFixed fixed;

// Assign the value 32767.5

fixed = FixedLiteralFromInts(FIXED_ISUNSIGNED, 16, 8, 37267, 128);
}

This gives the structure the values:

fixed.FixedIntBits = 37267;
fixed.FixedFracBits = 128;

1.4.16 FixedLT

FixedLT(Fixedl, Fixed?);

Arguments

Fixed Fixed-point structure of any type
1 and width

Fixed Fixed-point structure of the same
2 type and width

Return values

Single bit wide integer with O as false and 1 as true.

Description

Returns true if Fixedl is less than Fixed?.

www.celoxica.com Page 30

Fixed-point Library Manual

Celoxica

Requirements

Header fixed.hch
file:

Library fixed.hcl
file:

Example

This example tests for less than of two FIXED_UNSIGNED (4, 4).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_UNSIGNED(4, 4) MyFixed;

void main(void)
{
unsigned int 1 result;
MyFixed fixedl, fixed?2;
// Give the fixed-point number value 3.5
fixedl = FixedLiteral (FIXED_ISUNSIGNED, 4, 4, 3.5);
// Give the fixed-point number value 3.5
fixed2 = FixedLiteral (FIXED_ISUNSIGNED, 4, 4, 3.5);
// Is fixedl < fixed?
result = FixedLT(fixedl, fixed2);
}

fixedl is not less than fixed?Z so:

result = 0;

1.4.17 FixedLTE

FixedLTE(Fixedl, Fixed?);

Arguments

Fixed Fixed-point structure of any type
1 and width

Fixed Fixed-point structure of the same
2 type and width

Return values

Single bit wide integer with 0 as false and 1 as true.

Description

Returns true if Fixedl is less than or equal to FixedZ.

www.celoxica.com Page 31

Fixed-point Library Manual

Celoxica

Requirements

Header file: fixed.hch

Library file: fixed.hcl

Example

This example tests for less than or equal to of two FIXED_UNSIGNED(4, 4).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_UNSIGNED(4, 4) MyFixed;

void main(void)

{
unsigned int 1 result;
MyFixed fixedl, fixed?;
// Give the fixed-point number value 3.5
fixedl = FixedLiteralFromInts(FIXED_ISUNSIGNED, 4, 4, 3, 8);
// Give the fixed-point number value 3.5
fixed2 = FixedLiteralFromInts(FIXED_ISUNSIGNED, 4, 4, 3, 8);
// Is fixedl less than or equal to fixed?
result = FixedLTE(fixedl, fixed2);
}

fixedl is less than or equal to fixedZ so:

result = 1;

1.4.18 FixedMultSigned

FixedMultSigned(Fixedl, Fixed?);
Arguments

Fixedl Fixed-point structure of signed type and
any width

FixedZ Fixed-point structure of signed type and
the same width

Return values

Fixed-point number of signed type and the same width as Fixedl and Fixed?Z.

Description

Multiplier for signed fixed-point numbers only. Returns FixedI multiplied by Fixed2. The
number returned is of the same width as Fixedl so any bits outside this width are lost.

~

www.celoxica.com Page 32

Fixed-point Library Manual

Celoxica

Requirements

Header file: fixed.hch
Library file: fixed.hcl

Example
This example shows multiplication on FIXED_SIGNED(1, 16).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_SIGNED(1, 16) MyFixed;

void main(void)

{
MyFixed fixedl, fixed2, fixed3;
// Give the fixed-point number value -0.5
fixedl = FixedLiteral (FIXED_ISSIGNED, 1, 16, -0.5);
// Give the fixed-point number value -0.125
fixed2 = FixedLiteral (FIXED_ISSIGNED, 1, 16, -0.125);
// Multiply these numbers
fixed3d = FixedMultSigned(fixedl, fixed2);
}

The result is 0.0625. This is stored as:

fixed3.FixedIntBits = 0;
fixed3.FixedFracBits = 4096;

1.4.19 FixedMultUnsigned

FixedMultUnsigned(Fixedl, Fixed?);
Arguments

Fixed Fixed-point structure of unsigned type
1 and any width

Fixed Fixed-point structure of unsigned type
2 and the same width

Return values

Fixed-point number of unsigned type and the same width as FixedI and FixedZ.

Description

Multiplier for unsigned fixed-point numbers only. Returns FixedI multiplied by FixedZ.
The number returned is of the same width as FixedI so any bits outside this width are

lost.
\\

www.celoxica.com Page 33

Fixed-point Library Manual

Celoxica

Requirements

Header fixed.hch
file:

Library fixed.hcl
file:

Example

This example shows multiplication on FIXED_UNSIGNED(1, 16).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_UNSIGNED(1, 16) MyFixed;

void main(void)

{
MyFixed fixedl, fixed2, fixed3;
// Give the fixed-point number value 0.5
fixedl = FixedLiteral(FIXED_ISUNSIGNED, 1, 16, 0.5);
// Give the fixed-point number value 0.125
fixed?2 = FixedLiteral (FIXED_ISUNSIGNED, 1, 16, 0.125);
// Multiply these numbers
fixed3 = FixedMultUnsigned(fixedl, fixed2);
}

The result is 0.0625. This is stored as:

fixed3.FixedIntBits = 0;
fixed3.FixedFracBits = 4096;

1.4.20 FixedNeg

FixedNeg(Fixed);
Arguments

Fixe Fixed-point structure of signed type and any
d width

Return values

Fixed-point number of same type and width as Fixed.

Description

Returns the negative of Fixed.

www.celoxica.com Page 34

Fixed-point Library Manual

Celoxica

Requirements

Header file: fixed.hch
Library file: fixed.hcl
Example

This example negates a FIXED_SIGNED(4, 4).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_SIGNED(4, 4) MyFixed;

void main(void)

{
MyFixed fixedl, fixed?2;
// Give the fixed-point number value -1.625
fixedl = FixedLiteralFromInts(FIXED_ISSIGNED, 4, 4, -2, 6);
// Find the negative of this number
fixed2 = FixedNeg(fixedl);
}

The result is 1.625. This is stored as:

fixed2.FixedIntBits = 1;
fixed2.FixedFracBits = 10;

1.4.21 FixedNEq

FixedNEq(Fixedl, Fixed?);

Arguments

Fixed Fixed-point structure of any type
1 and width

Fixed Fixed-point structure of the same
2 type and width

Return values

Single bit wide integer with 0 as false and 1 as true.

Description

Returns true if Fixedl does not equal Fixed?Z.

www.celoxica.com Page 35

Fixed-point Library Manual

Celoxica

Requirements
Header file: fixed.hch
Library file: fixed.hcl

Example
This example tests for non-equality of two FIXED_UNSIGNED(16, 16).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_UNSIGNED(16, 16) MyFixed;

void main(void)

{
unsigned int 1 result;
MyFixed fixedl, fixed?;
// Give the fixed-point number value 1000.046875
fixedl = FixedLiteral (FIXED_ISUNSIGNED, 16, 16, 1000.046875);
// Give the fixed-point number value 1000.03125
fixed?2 = FixedLiteral(FIXED_ISUNSIGNED, 16, 16, 1000.03125);
// Are these numbers not equal?
result = FixedNEq(fixedl, fixed2);
}

fixedl is not equal to fixedZ so:

result = 1;

1.4.22 FixedNot

FixedNot(Fixed);
Arguments

Fixe Fixed-point structure of any type
d and width

Return values

Fixed-point number of the same type and width as Fixed.

Description
Returns bitwise NOT of Fixed.

www.celoxica.com Page 36

Fixed-point Library Manual

Celoxica

Requirements

Header file: fixed.hch

Library file: fixed.hcl

Example

This example finds the bitwise NOT of a FIXED_SIGNED(4, 4).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_SIGNED(4, 4) MyFixed;

void main(void)

{
MyFixed fixedl, fixed?;
// Give the fixed-point number value -5.875
fixedl = FixedLiteral(FIXED_ISSIGNED, 4, 4, -5.875);
// Find the bitwise not of this number
fixed? = FixedNot(fixedl);
}

The result is 5.8125. This is stored as:

fixed2.FixedIntBits = 5;
fixed2.FixedFracBits = 13;

1.4.23 FixedOr

FixedOr(Fixedl, Fixed?);

Arguments

Fixed Fixed-point structure of any type
1 and width

Fixed Fixed-point structure of the same
2 type and width

Return values

Fixed-point number of the same type and width as Fixedl and Fixed?.

Description

Returns bitwise inclusive OR of Fixedl and Fixed?.

www.celoxica.com Page 37

Fixed-point Library Manual

Celoxica

Requirements
Header file: fixed.hch
Library file: fixed.hcl

Example
This example finds the bitwise OR of two FIXED_SIGNED(5, 5).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_SIGNED(5, 5) MyFixed;

void main(void)
{
MyFixed fixedl, fixed2, fixed3;
// Give the fixed-point number value -1
fixedl = FixedLiteral(FIXED_ISSIGNED, 5, 5, -1);
// Give the fixed-point number value 0.96875
fixed2 = FixedLiteral (FIXED_ISSIGNED, 5, 5, 0.96875);
// 0r these numbers
fixed3d = FixedOr(fixedl, fixed2);
}

The result is -0.03125. This is stored as:

fixed3.FixedIntBits = -1;
fixed3.FixedFracBits = 31;

1.4.24 FixedRightShift

FixedRightShift(Fixed, Shift);

Arguments

Fixe Fixed-point structure of any type and width
d

Shif Number of bits to shift right by

t

Return values

Fixed-point number of same type and width as Fixed.

Description

Returns Fixed shifted right by Shift number of bits. The number returned is of the same
width as Fixed so any bits shifted outside this width are lost.

~

www.celoxica.com Page 38

Fixed-point Library Manual

Celoxica

When shifting unsigned values, the right shift pads the upper bits with zeros. When
shifting signed values, the upper bits are copies of the top bit of the original value. Thus
a shift right by 1 divides the value by 2 and preserves the sign.

The Shift expression must be unsigned and of width
shiftWidth = log2ceil (intWidth + fracWidth + 1)

where intWidth is width(Fixed.FixedIntBits) and fracWidth is
width(Fixed.FixedFracBits) (as defined in FIXED_SIGNED and FIXED_UNSIGNED)

Shift has the range: 0 to exp2 (shiftwidth) - 1.

If Shift is O no shift takes place. If Shift is (intWidth + fracWidth) all the bits are
shifted out of Fixed.

Requirements

Header file: fixed.hch
Library file: fixed.hcl
Example

This example shows right shifting on a FIXED_SIGNED(4, 4).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_SIGNED(4, 4) MyFixed;

void main(void)

{
MyFixed fixedl, fixed?;
// Give the fixed-point number value -0.75
fixedl = FixedLiteralFromInts(FIXED_ISSIGNED, 4, 4, -1, 4);
// Shift this number right by 1 bit
fixed?2 = FixedRightShift(fixedl, 1);
}

The result is —0.375. This is stored as:

fixed2.FixedIntBits = -1;
fixed2.FixedFracBits = 10;

www.celoxica.com Page 39

Fixed-point Library Manual

Celoxica

1.4.25 FixedSub

FixedSub(Fixedl, Fixed?);
Arguments

Fixed Fixed-point structure of any type and
1 width

Fixed Fixed-point structure of the same type
2 and width

Return values

Fixed-point number of the same type and width as FixedI and FixedZ2.

Description

Returns Fixed? subtracted from Fixedl. The number returned is of the same width as
Fixedl so any bits outside this width are lost.

Requirements

Header file: fixed.hch

Library file: fixed.hc]

Example

This example shows subtraction on a FIXED_SIGNED(2, 4).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_SIGNED(2, 4) MyFixed;

void main(void)

{
MyFixed fixedl, fixed2, fixed3;
// Give the fixed-point number value 1.0625
fixedl = FixedLiteral(FIXED_ISSIGNED, 2, 4, 1.0625);
// Give the fixed-point number value 1.125
fixed2 = FixedLiteral (FIXED_ISSIGNED, 2, 4, 1.125);
// Subtract fixed? from fixedl
fixed3d = FixedSub(fixedl, fixed?2);
}

The result is —0.0625. This is stored as:

fixed2.FixedIntBits = -1;
fixed2.FixedFracBits = 15;

www.celoxica.com Page 40

Fixed-point Library Manual

Celoxica

1.4.26 FixedToBits

FixedToBits(Fixed);
Arguments

Fixe Fixed-point structure of any type
d and width

Return values

Integer with type the same as Fixed and width of the sum of the widths of the integer
and fraction parts of Fixed.

Description

Returns the integer and fraction parts of Fixed concatenated together.

Requirements

Header fixed.hch
file:

Library fixed.hcl
file:

Example

This example extracts the bits of a FIXED_UNSIGNED(4, 4).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_UNSIGNED(4, 4) MyFixed;

void main(void)
{
unsigned int 8 result;
MyFixed fixed;
// Assign the value 12.125
fixed = FixedLiteral (FIXED_ISUNSIGNED, 4, 4, 12.125);
// Find the type
result = FixedToBits(fixed);
}

The result is equal to 12x2* + 2 = 194:
result =0b11000010; // binary number

www.celoxica.com Page 41

Fixed-point Library Manual

Celoxica

1.4.27 FixedToBool

FixedToBool(Fixed);
Arguments

Fixe Fixed-point structure of any type
d and width

Return values

Single bit wide integer with 0 as false and 1 as true.

Description

Returns O if the integer and fraction values of fixed are equal to zero and 1 otherwise.
FixedToBool(x) is equivalent to FixedNEq(x, Zero), where Zero is a fixed-point
expression of value 0, and type the same as x.

Requirements

Header file: fixed.hch

Library file: fixed.hcl
Example
This example tests for not equal to O of a FIXED_UNSIGNED(4, 4).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_UNSIGNED(4, 4) MyFixed;

void main(void)
{
unsigned int 1 result;
MyFixed fixed;
// Assign the value 8
fixed = FixedLiteralFromInts(FIXED_ISUNSIGNED, 4, 4, 8, 0);
// Find the type
result = FixedToBool(fixed);
}

The result is true:

result = 1;

www.celoxica.com Page 42

Fixed-point Library Manual

Celoxica

1.4.28 FixedTolnt

FixedToInt(Fixed);
Arguments

Fixe Fixed-point structure of any type
d and width

Return values

Integer of same type and width as the integer part of the fixed-point structure.

Description

Returns the integer part of the fixed-point number, rounded towards minus infinity.

Note that this behaviour is different from 1SO-C, which rounds towards O.

Requirements

Header fixed.hch
file:

Library fixed.hcl
file:

Example

This example extracts the integer part of a FIXED_SIGNED(16, 8).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_SIGNED(16, 8) MyFixed;

void main(void)

{
signed int 16 result;
MyFixed fixed;
// Assign the value 32767.5
fixed = FixedLiteral (FIXED_ISSIGNED, 16, 8, 32767.5);
// Find the integer part of the fixed-point number
result = FixedToInt(fixed);

}

The result is 32767.

www.celoxica.com Page 43

Fixed-point Library Manual

Celoxica

1.4.29 FixedXor

FixedXor(Fixedl, Fixed?);

Arguments

Fixed Fixed-point structure of any type
1 and width

Fixed Fixed-point structure of the same
2 type and width

Return values

Fixed-point number of the same type and width as FixedI and FixedZ2.

Description
Returns bitwise XOR of Fixedl and Fixed?.

Requirements

Header file: fixed.hch

Library file: fixed.hcl

Example

This example finds the bitwise XOR of two FIXED_SIGNED(5, 5).

#include <fixed.hch>
set clock = external "P1";
typedef FIXED_SIGNED(5, 5) MyFixed;

void main(void)

{
MyFixed fixedl, fixed2, fixed3;
// Give the fixed-point number value -1
fixedl = FixedLiteral(FIXED_ISSIGNED, 5, 5, -1);
// Give the fixed-point number value 0.96875
fixed2 = FixedLiteral (FIXED_ISSIGNED, 5, 5, 0.96875);
// Xor these numbers
fixed3d = FixedXor(fixedl, fixed?2);
}

The result is —1. 03125. This is stored as:

fixed3.FixedIntBits = -2;
fixed3.FixedFracBits = 31;

www.celoxica.com Page 44

Fixed-point Library Manual

Celoxica

2 Index

<

< (lessthan)cccociiiiiiiiii.. 30

<= (lessthan orequal).................... 31

>

> (greater than)ccoiieiiiiinnnnnn. 23

>= (greater than or equal) 24

A

absolute values.............oooo 13
fixed-point 13

additionoiiiiiii 14
fixed-point 14

arithmetic operators13, 14, 19, 20, 32,
33, 34, 40

fixed-point 13, 14, 19, 20, 32, 33, 40
B

bit manipulation

fixed-point operators 26, 38
bitwise logical operators...15, 36, 37, 44
bitwise AND 15
bitwise NOT 36
bitwise OR 37
bitwise XOR 44
boolean typecooiiiiiii 42
C
CaStiNg +ooe s 16, 17
fixed-point numbers 16, 17
(o701 01V/=1 ¢S (0] o H 8,9, 11

negative numbers to signed fixed-
point numbers 9

positive numbers to signed fixed-point
numbers 8

unsigned numbers to fixed-point
structures 11

conversion operators16, 17, 22, 25, 27,
29, 41, 42, 43

casting 16, 17

width 22,25
D
division ..o 19, 20

fixed-point 19, 20
does notequal.......ccooiiiiiiiiiiininnn... 35
E
equalitycooviiiiiii 21, 35
F
fixed.h. oo 4
fixed.hch.......oo 4
fixed.hel. ... 4
fixed.libo 4
FIXED_ISSIGNED ...cccviiiiiiiiiiiiiiieene 5
FIXED_ISUNSIGNEDccevviiiiiiiannnn. 6
FIXED_SIGNEDevviiiiiiiiiiiiieiieaee 7
FIXED_UNSIGNEDcociiiiiiiiieans 10
FiXedADS ... 13
FixedAdd......coooiiii e 14
FixedANd. .. .o 15
FixedCastSigned.........c.ccooviiiiiiinnn, 16
FixedCastUnsignedocoaee. 17
FixedDivSignedcccoevvviiiiiinnnin. 19
FixedDivUnsigned..............coceviieanne 20
FIXEAEQ. .. e 21
FixedFracWidth ...l 22
D (=0 [23
D (= o [I 24
FixedIntWidth ...l 25
FixedLeftShift ..., 26
FixedLiteralccooviiiiiiiiiiiiiiiia, 27
FixedLiteralFromInts........................ 29
D (= o | 30
D= | I 31
FixedMultSigned.............cooiiiiiiian, 32
FixedMultUnsignedcoooiieains 33

www.celoxica.com

Page 45

Fixed-point Library Manual

Celoxica

FixedNeg ..oovvneiiiiiiiii i 34
FIX@ANEQ .o 35
FixedNOt ... 36
D=0 [] 37
fixed-point library.................oll 4
fixed-point Macroscc.ccoeeene... 4,6
Fixed-point notation 4
fixed-point numbers 6, 10
FixedRightShift ...t 38
FixedSub.....cooiiiiii 40
FiXedTOBItS ..ovoiiiiiiiiiiicieeieee e 41
FixedToBOOI.......oooiiiiiiiiiii e 42
FixedTolnt.......ooooiiiiiiiiiiiiieaee 43
FIXedXOr .o 44
G
greater than ..o, 23
greater than or equal to 24
H
header filesccoviiiiiiiii 4
fixed-point library 4
I
ISSigned ..o 5
IsUnsignedc..oooiiiiiiiiiiiiiii i 6
L
left-shift......cccoooiii 26
lessthan........coooviiiiiiiiiiiiiiiiie 30
lessthanorequal to........cccceevinnne... 31
M
multiplication...................ooo.l. 32, 33
fixed-point 32, 33
R

relational operators21, 23, 24, 30, 31,
35

S

signed fixed-point structures............... 6

SUbtractioncovoiiiiiiiiiiie 40
fixed-point 40

U

unsigned fixed-point structures 10

fixed-point 21, 23, 24, 30, 31, 35
right-shift............. 38
www.celoxica.com Page 46

	Fixed-point library
	Fixed-point notation
	Fixed-point library header file
	Example
	FIXED_ISSIGNED
	Description
	Requirements
	Example

	FIXED_ISUNSIGNED
	Description
	Requirements
	Example

	Fixed-point structures
	Signed fixed-point structures
	FIXED_SIGNED
	Arguments
	Return values
	Description
	Requirements
	Example
	Converting positive numbers to signed fixed-point structures
	Example
	Explanation
	Converting negative numbers to signed fixed-point structures
	Example
	Explanation

	Unsigned fixed-point structures
	FIXED_UNSIGNED
	Arguments
	Return values
	Description
	Requirements
	Example
	Converting unsigned numbers to unsigned fixed-point structur
	Example
	Explanation

	Fixed point functions
	FixedAbs
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedAdd
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedAnd
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedCastSigned
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedCastUnsigned
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedDivSigned
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedDivUnsigned
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedEq
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedFracWidth
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedGT
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedGTE
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedIntWidth
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedLeftShift
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedLiteral
	Arguments
	Return values
	Description
	Requirements
	Example 1:
	Example 2:

	FixedLiteralFromInts
	Arguments
	Return values
	Description
	Requirements
	Example 1:
	Example 2:

	FixedLT
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedLTE
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedMultSigned
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedMultUnsigned
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedNeg
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedNEq
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedNot
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedOr
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedRightShift
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedSub
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedToBits
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedToBool
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedToInt
	Arguments
	Return values
	Description
	Requirements
	Example

	FixedXor
	Arguments
	Return values
	Description
	Requirements
	Example

	Index

