

DK4

Handel-C Language Reference Manual

For DK version 4

Handel-C Language Reference Manual

www.celoxica.com

Celoxica, the Celoxica logo and Handel-C are trademarks of Celoxica Limited.

All other products or services mentioned herein may be trademarks of their respective
owners.

Neither the whole nor any part of the information contained in, or the product described
in, this document may be adapted or reproduced in any material form except with the
prior written permission of the copyright holder.

The product described in this document is subject to continuous development and
improvement. All particulars of the product and its use contained in this document are
given by Celoxica Limited in good faith. However, all warranties implied or express,
including but not limited to implied warranties of merchantability, or fitness for purpose,
are excluded.

This document is intended only to assist the reader in the use of the product. Celoxica
Limited shall not be liable for any loss or damage arising from the use of any information
in this document, or any incorrect use of the product.

The information contained herein is subject to change without notice and is for general
guidance only.

Copyright © 2005 Celoxica Limited. All rights reserved.

Authors: RG

Document number: RM-1003-4.2

Customer Support at http://www.celoxica.com/support/

Celoxica in Europe Celoxica in Japan Celoxica in the Americas

T: +44 (0) 1235 863 656 T: +81 (0) 45 331 0218 T: +1 800 570 7004

E: sales.emea@celoxica.com E: sales.japan@celoxica.com E: sales.america@celoxica.com

Handel-C Language Reference Manual

www.celoxica.com Page 1

Contents

1 INTRODUCTION ... 11
1.1 REFERENCES.. 11

2 GETTING STARTED WITH HANDEL-C ... 12
2.1 BASIC CONCEPTS.. 12

2.1.1 Handel-C programs ... 12
2.1.2 Parallel programs.. 12
2.1.3 Channel communication ... 13
2.1.4 Scope and variable sharing... 15

3 LANGUAGE BASICS ... 16
3.1 PROGRAM STRUCTURE.. 16
3.2 COMMENTS ... 17
3.3 STATEMENT SUMMARY ... 17
3.4 OPERATOR SUMMARY... 19
3.5 TYPE SUMMARY .. 21
3.6 COMPARISON OF HANDEL-C AND ANSI-C 22

3.6.1 Handel-C v C: types and type operators ... 23
3.6.2 Handel-C v C: floating-point variables .. 23
3.6.3 Handel-C v C: variable widths and casting .. 24
3.6.4 Handel-C v C: side effects .. 25
3.6.5 Handel-C v C: functions ... 26
3.6.6 Handel-C v C: loop statements ... 27
3.6.7 Handel-C v C: unions... 28
3.6.8 Handel-C v C: data input and output.. 29
3.6.9 Handel-C v C: memory allocation .. 29
3.6.10 Handel-C v C: standard library .. 29
3.6.11 C and Handel-C types and objects ... 29
3.6.12 Expressions in C and Handel-C .. 30
3.6.13 Statements in C and Handel-C .. 32

3.7 HANDEL-C CONSTRUCTS NOT FOUND IN ANSI-C 32

4 DECLARATIONS ... 36
4.1 INTRODUCTION TO TYPES ... 36

4.1.1 Handel-C values and widths.. 36
4.1.2 String constants ... 37
4.1.3 Constants .. 37

4.2 LOGIC TYPES ... 38
4.2.1 int .. 38
4.2.2 Signed | unsigned syntax... 39
4.2.3 Supported types for porting.. 39
4.2.4 Inferring widths .. 40

Handel-C Language Reference Manual

www.celoxica.com Page 2

4.2.5 Arrays ... 41
4.2.6 Array indices .. 43
4.2.7 struct .. 43
4.2.8 enum .. 44
4.2.9 Bit fields .. 45

4.3 POINTERS... 46
4.3.1 Pointers and addresses .. 48
4.3.2 Pointers to functions.. 48
4.3.3 Pointers to interfaces... 49
4.3.4 Structure pointers ... 49
4.3.5 address and indirection operators.. 50

4.4 ARCHITECTURAL TYPES .. 51
4.5 CHANNELS .. 51

4.5.1 FIFO code example ... 53
4.5.2 Arrays of channels .. 53
4.5.3 Restrictions on channel accesses ... 53
4.5.4 Timing and latency in FIFOs ... 55

4.6 INTERFACES: OVERVIEW .. 56
4.6.1 Interface declaration ... 56
4.6.2 Interface definition.. 57
4.6.3 Example interface to external code .. 58
4.6.4 Interface specifications .. 59

4.7 RAMS AND ROMS.. 61
4.7.1 Initialization ... 61
4.7.2 Inferring size from use... 62
4.7.3 Accessing RAMs and ROMs ... 62
4.7.4 Differences between RAMs and arrays.. 62
4.7.5 RAM and ROM support on different devices ... 63
4.7.6 Multidimensional memory arrays ... 63

4.8 MPRAM (MULTI-PORTED RAMS) .. 64
4.8.1 Initialization of mprams ... 66
4.8.2 Mapping of different width mpram ports ... 66
4.8.3 mprams example .. 68

4.9 WOM (WRITE-ONLY MEMORY).. 69
4.10 SEMA ... 69
4.11 SIGNAL .. 70
4.12 STORAGE CLASS SPECIFIERS.. 71

4.12.1 auto .. 71
4.12.2 extern (external variables) ... 72

4.13 EXTERN LANGUAGE CONSTRUCT .. 72
4.14 REGISTER ... 75
4.15 INLINE FUNCTIONS ... 75
4.16 STATIC... 76
4.17 TYPEDEF ... 76
4.18 TYPEOF .. 77
4.19 CONST.. 78

Handel-C Language Reference Manual

www.celoxica.com Page 3

4.20 VOLATILE.. 78
4.21 COMPLEX DECLARATIONS.. 78

4.21.1 Macro expressions in widths.. 78
4.21.2 <> (type clarifier) ... 79
4.21.3 Using signals to split up complex expressions .. 79

4.22 VARIABLE INITIALIZATION ... 80

5 STATEMENTS... 82
5.1 SEQUENTIAL AND PARALLEL EXECUTION ... 82
5.2 SEQ 83
5.3 REPLICATED PAR AND SEQ .. 83
5.4 PRIALT... 85
5.5 USING PRIALT: EXAMPLES .. 86
5.6 ASSIGNMENTS ... 88

5.6.1 continue .. 89
5.6.2 goto.. 90
5.6.3 return [expression] ... 91
5.6.4 Conditional execution (if ... else)... 91
5.6.5 while loops... 92
5.6.6 do ... while loops .. 93
5.6.7 for loops .. 93
5.6.8 switch ... 95
5.6.9 break .. 96
5.6.10 delay... 97
5.6.11 try... reset ... 97
5.6.12 trysema() .. 99
5.6.13 releasesema() .. 100

6 EXPRESSIONS ..102
6.1 INTRODUCTION TO EXPRESSIONS ..102

6.1.1 Clock cycles required... 102
6.1.2 Breaking down complex expressions .. 102
6.1.3 Prefix and postfix operators.. 102

6.2 CASTING OF EXPRESSION TYPES..103
6.2.1 Restrictions on casting... 104

6.3 RESTRICTIONS ON RAMS AND ROMS ..104
6.4 ASSERT ...106
6.5 BIT MANIPULATION OPERATORS..108

6.5.1 Shift operators ... 109
6.5.2 Take / drop operators.. 109
6.5.3 Concatenation operator.. 109
6.5.4 Bit selection ... 110
6.5.5 Width operator ... 111

6.6 ARITHMETIC OPERATORS...111
6.7 RELATIONAL OPERATORS...113

6.7.1 Signed/unsigned compares... 114

Handel-C Language Reference Manual

www.celoxica.com Page 4

6.7.2 Implicit compares ... 114
6.8 LOGICAL OPERATORS..114

6.8.1 Bitwise logical operators .. 115
6.9 CONDITIONAL OPERATOR ..116
6.10 MEMBER OPERATORS (. / ->) ..116

7 FUNCTIONS AND MACROS ..118
7.1 FUNCTIONS AND MACROS: OVERVIEW...118

7.1.1 Functions and macros: language issues.. 118
7.1.2 Functions and macros: sharing hardware.. 120
7.1.3 Functions and macros: clock cycles.. 121
7.1.4 Functions and macros: examples... 121
7.1.5 Accessing external names .. 123
7.1.6 Recursion in macros and functions... 124

7.2 INTRODUCTION TO FUNCTIONS ...124
7.2.1 Function definitions and declarations.. 125
7.2.2 Functions: scope... 126
7.2.3 Arrays of functions .. 126
7.2.4 Function arrays: example... 127
7.2.5 Function arrays example with static variables.. 128
7.2.6 Function pointers .. 129
7.2.7 Function pointers example.. 130
7.2.8 Simultaneous function calls .. 134
7.2.9 Multiple functions in a statement... 136

7.3 INTRODUCTION TO MACROS ...137
7.3.1 Non-parameterized macro expressions... 137
7.3.2 Parameterized macro expressions ... 138
7.3.3 select operator ... 138
7.3.4 ifselect .. 139
7.3.5 Recursive macro expressions .. 140
7.3.6 Recursive macro expressions example ... 142
7.3.7 Shared expressions ... 142
7.3.8 Using recursion to generate shared expressions 143
7.3.9 Restrictions on shared expressions .. 143
7.3.10 let ... in ... 144
7.3.11 Macro procedures.. 145
7.3.12 Macro procedures compared to pre-processor macros............................. 146

8 INTRODUCTION TO TIMING..148
8.1 STATEMENT TIMING ...148

8.1.1 Example timings ... 148
8.1.2 Statement timing summary .. 154

8.2 AVOIDING COMBINATIONAL LOOPS ..156
8.3 PARALLEL ACCESS TO VARIABLES...158
8.4 DETAILED TIMING EXAMPLE ...159
8.5 TIME EFFICIENCY OF HANDEL-C HARDWARE161

8.5.1 Reducing logic depth ... 161

Handel-C Language Reference Manual

www.celoxica.com Page 5

8.5.2 Pipelining... 164

9 CLOCKS OVERVIEW..167
9.1 LOCATING THE CLOCK ...167

9.1.1 External clocks ... 168
9.1.2 Internal clocks fed from expressions .. 168

9.2 CURRENT CLOCK..169
9.3 MULTIPLE CLOCK DOMAINS ..169

9.3.1 Channels communicating between clock domains..................................... 169
9.3.2 Simulating multiple clock domains... 183

10 TARGETING HARDWARE AND SIMULATION ...184
10.1 INTERFACING WITH THE SIMULATOR ..184

10.1.1 Simulator input file format.. 185
10.1.2 Block data transfers... 185

10.2 TARGETING FPGA AND PLD DEVICES ..186
10.2.1 Summary of supported devices ... 187
10.2.2 Detecting the current device family.. 189
10.2.3 Targeting specific devices via source code... 190
10.2.4 Specifying a global reset .. 193

10.3 USE OF RAMS AND ROMS WITH HANDEL-C193
10.3.1 Asynchronous RAMs... 194
10.3.2 Synchronous RAMs .. 200
10.3.3 Targeting Stratix and Cyclone memory blocks 216
10.3.4 Using on-chip RAMs in Actel devices... 217
10.3.5 Using on-chip RAMs in Altera devices ... 218
10.3.6 Using on-chip RAMs in Xilinx devices .. 219
10.3.7 Using external ROMs.. 219
10.3.8 Connecting to RAMs in foreign code ... 220
10.3.9 Using other RAMs.. 224

11 INTERFACING WITH EXTERNAL HARDWARE ..225
11.1 INTERFACE SORTS..225

11.1.1 Reading from external pins bus_in ... 226
11.1.2 Registered reading from external pins: bus_latch_in 227
11.1.3 Clocked reading from external pins: bus_clock_in 228
11.1.4 Writing to external pins: bus_out... 228
11.1.5 Bidirectional data transfer: bus_ts ... 228
11.1.6 Bidirectional data transfer with registered input: bus_ts_latch_in 229
11.1.7 Bidirectional data transfer with clocked input: bus_ts_clock_in................. 231
11.1.8 Example hardware interface.. 232

11.2 SIMULATING INTERFACES ..235
11.3 BUSES AND THE SIMULATOR ...237
11.4 MERGING PINS ...238

11.4.1 Merging clock pins... 238
11.4.2 Merging input pins... 239
11.4.3 Merging tri-state pins... 239

Handel-C Language Reference Manual

www.celoxica.com Page 6

11.5 TIMING CONSIDERATIONS FOR BUSES...240
11.5.1 Example timing considerations for input buses....................................... 240
11.5.2 Example timing considerations for output buses..................................... 242

11.6 METASTABILITY ..242
11.6.1 Techniques to minimize the problem .. 243
11.6.2 Using interfaces: External resynchronizing example 246

11.7 PORTS: INTERFACING WITH EXTERNAL LOGIC248
11.8 SPECIFYING THE INTERFACE...249
11.9 TARGETING PORTS TO SPECIFIC TOOLS250

12 OBJECT SPECIFICATIONS ..252
12.1 SUMMARY OF SPECIFICATIONS..252

12.1.1 Compiler atttributes... 252
12.1.2 Simulator attributes... 253
12.1.3 Clock attributes... 254
12.1.4 Channel attributes... 256
12.1.5 Channel and memory attributes .. 256
12.1.6 Memory attributes ... 256
12.1.7 Interface and memory attributes ... 258
12.1.8 Interface attributes.. 259
12.1.9 Examples ... 260

12.2 BASE SPECIFICATION..261
12.3 BIND SPECIFICATION..261
12.4 BLOCK SPECIFICATION ..263
12.5 BUFFER SPECIFICATION...266
12.6 BUSFORMAT SPECIFICATION ...266
12.7 SPECIFYING THE CLOCK PIN FOR SSRAM....................................268
12.8 CLOCKPORT SPECIFICATION ...269
12.9 DATA SPECIFICATION (PIN CONSTRAINTS)271
12.10 DCI SPECIFICATION..272
12.11 EXTINST, EXTLIB, EXTFUNC SPECIFICATIONS273
12.12 EXTPATH SPECIFICATION ...275
12.13 FIFOLENGTH SPECIFICATION...275
12.14 INFILE AND OUTFILE SPECIFICATIONS.......................................276
12.15 INTIME AND OUTTIME SPECIFICATIONS276
12.16 TIMING CONSTRAINTS EXAMPLE ..277
12.17 MINPERIOD SPECIFICATION ...280
12.18 OFFCHIP SPECIFICATION ...281
12.19 PARANOIA SPECIFICATION ...282
12.20 PIN SPECIFICATIONS..283
12.21 PORTS SPECIFICATION ..284
12.22 PROPERTIES SPECIFICATION...285
12.23 PULL SPECIFICATION ..287

Handel-C Language Reference Manual

www.celoxica.com Page 7

12.24 QUARTUS_PROJ_ASSIGN SPECIFICATION288
12.25 RATE SPECIFICATION ..288
12.26 RCLKPOS, WCLKPOS AND CLKPULSELEN SPECIFICATIONS (SSRAM

TIMING) ...289
12.27 RESOLUTIONTIME SPECIFICATION..291
12.28 RETIME SPECIFICATION...291
12.29 SC_TYPE SPECIFICATION ...292
12.30 SHOW SPECIFICATION...293
12.31 SPEED SPECIFICATION ..293
12.32 STANDARD SPECIFICATION...293

12.32.1 Available I/O standards .. 294
12.32.2 I/O standards supported by different chips.. 296
12.32.3 I/O standard details ... 297
12.32.4 Differential I/O standards ... 301

12.33 STD_LOGIC_VECTOR SPECIFICATION..302
12.34 STRENGTH SPECIFICATION ...303
12.35 SYNCHRONOUS SPECIFICATION ...304
12.36 UNCONSTRAINEDPERIOD SPECIFICATION...................................304
12.37 VHDL_TYPE SPECIFICATION ...305
12.38 WARN SPECIFICATION...307
12.39 WEGATE SPECIFICATION..307
12.40 WESTART AND WELENGTH SPECIFICATIONS307

13 HANDEL-C PREPROCESSOR..310
13.1 PREPROCESSOR MACROS ...310
13.2 FILE INCLUSION ..311
13.3 CONDITIONAL COMPILATION ..312
13.4 LINE CONTROL ..313
13.5 CONCATENATION IN MACROS..313
13.6 ERROR GENERATION...314
13.7 PREDEFINED MACRO SUBSTITUTION ...314
13.8 LINE SPLICING..314

14 LANGUAGE SYNTAX..316
14.1 LANGUAGE SYNTAX CONVENTIONS ...316
14.2 KEYWORD SUMMARY ..316
14.3 CONSTANT EXPRESSIONS...321

14.3.1 Identifiers: syntax... 321
14.3.2 Integer constants: syntax... 322
14.3.3 Character constants: syntax ... 322
14.3.4 Strings: syntax ... 322
14.3.5 Floating-point constants: syntax.. 322

14.4 FUNCTIONS AND DECLARATIONS: SYNTAX....................................323

Handel-C Language Reference Manual

www.celoxica.com Page 8

14.5 MACRO/SHARED EXPRS/PROCS: SYNTAX324
14.6 INTERFACES: SYNTAX ...325
14.7 STRUCTURES AND UNIONS: SYNTAX ...326
14.8 ENUMERATED TYPES: SYNTAX ...326
14.9 SIGNAL SPECIFIERS: SYNTAX..326
14.10 CHANNEL SYNTAX ..326
14.11 RAM SPECIFIERS: SYNTAX..327
14.12 DECLARATORS: SYNTAX...327
14.13 FUNCTION PARAMETERS: SYNTAX ..327
14.14 TYPE NAMES AND ABSTRACT DECLARATORS: SYNTAX328
14.15 STATEMENTS: SYNTAX ..328

14.15.1 Compound statements with replicators ... 331
14.16 REPLICATORS: SYNTAX ...331
14.17 EXPRESSIONS: SYNTAX ...332

15 INDEX ..335

Handel-C Language Reference Manual

www.celoxica.com

Conventions
A number of conventions are used in this document. These conventions are detailed
below.

 ssage. These messages warn you that actions may damage your Warning Me
hardware.

 Handy Note. These messages draw your attention to crucial pieces of
information.

Hexadecimal numbers will appear throughout this document. The convention used is

ections o n in typewriter font like this:

formatio t you must specify is given in italics like this:

s like this:

urly brackets around an element show that it is optional but it may be repeated any
number of times.
 string ::= "{character}"

that of prefixing the number with '0x' in common with standard C syntax.

S f code or commands that you must type are give
 void main();

In n about a type of objec
 copy SourceFileName DestinationFileName

Optional elements are enclosed in square bracket
 struct [type_Name]

C

Handel-C Language Reference Manual

www.celoxica.com

Assumptions & Omissions
This manual assumes that you:

• have used Handel-C or have the Handel-C Language Reference Manual

• are familiar with common programming terms (e.g. functions)

• are familiar with MS Windows

This manual does not include:

• instruction in VHDL or Verilog

• instruction in the use of place and route tools

• tutorial example programs. These are provided in the Handel-C User Manual

Handel-C Language Reference Manual

www.celoxica.com Page 11

1 Introduction

1.1 References

• The C Programming Language 2nd Edition
Kernighan, B. and Ritchie, D.
Prentice-Hall, 1988

• Altera Databook
Altera 2004
www.altera.com/literature/lit-index.html

• Xilinx Data Book
Xilinx 2004
www.xilinx.com/literature/index.htm

• VHDL for logic synthesis
Author: Andrew Rushton
Publisher: John Wiley and Sons
ISBN: 0-471-98325-X
Published: May 1998

• IEEE standard 1364 -1995
IEEE Standard Hardware Description Language Based on the Verilog®
Hardware Description Language.
http://standards.ieee.org/

Handel-C Language Reference Manual

www.celoxica.com Page 12

2 Getting started with Handel-C

2.1 Basic concepts

Handel-C uses much of the syntax of conventional C with the addition of inherent
parallelism. You can write sequential programs in Handel-C, but to gain maximum benefit
in performance from the target hardware you must use its parallel constructs. These may
be new to some users. If you are familiar with conventional C you will recognize nearly
all the other features.

Handel-C programs

• Parallel programs

• Channel communications

• Scope and variable sharing

2.1.1 Handel-C programs

Since Handel-C is based on the syntax of conventional C, programs written in Handel-C
are implicitly sequential. Writing one command after another indicates that those
instructions should be executed in that exact order. To execute instructions in parallel,
you must use the par keyword.

Handel-C provides constructs to control the flow of a program. For example, code can be
executed conditionally depending on the value of some expression, or a block of code can
be repeated a number of times using a loop construct.

You can express your algorithm in Handel-C without worrying about how the underlying
computation engine works. This philosophy makes Handel-C a programming language
rather than a hardware description language. In some senses, Handel-C is to hardware
what a conventional high-level language is to microprocessor assembly language.

The hardware design that DK produces is generated directly from the Handel-C source
program. There is no intermediate 'interpreting' layer as exists in assembly language
when targeting general-purpose microprocessors. The logic gates that make up the final
Handel-C circuit are the assembly instructions of the Handel-C system.

2.1.2 Parallel programs

The target of the Handel-C compiler is low-level hardware. This means that you get
massive performance benefits by using parallelism. It is essential for writing efficient
programs to instruct the compiler to build hardware to execute statements in parallel.
Handel-C parallelism is true parallelism, not the time-sliced parallelism familiar from
general-purpose computers. When instructed to execute two instructions in parallel,

Handel-C Language Reference Manual

www.celoxica.com Page 13

those two instructions will be executed at exactly the same instant in time by two
separate pieces of hardware.

When a parallel block is encountered, execution flow splits at the start of the parallel
block and each branch of the block executes simultaneously. Execution flow then re-joins
at the end of the block when all branches have completed. Any branches that complete
early are forced to wait for the slowest branch before continuing.

This diagram il e execution flow. The left hand
and middle
instruction

cation

Channels provide a link between branches executing in parallel. One parallel branch
outputs data onto the channel and the other branch reads data from the channel.

Channels can be constructed with and without FIFO capacities

• Channels constructed as FIFOs

A channel can be constructed as a FIFO queue. In this case, the data is written
to the head of the FIFO and is read from the tail. If the FIFO is full, a write
blocks until an element is read from the FIFO. If the FIFO is empty, a read
blocks until there is data ready to be read.

• Channels constructed without FIFO capacity

These channels provide synchronization between parallel branc because
the data transfer can only complete when both the transmitter and the

e side is not ready, the other must wait.

lustrates the branching and re-joining of th
 branches must wait to ensure that all branches have completed before the
 following the parallel construct can be executed.

2.1.3 Channel communi

hes

receiver are ready. If on

Handel-C Language Reference Manual

www.celoxica.com Page 14

Channel synchronization

SYNCHRONIZATION OF NORMAL CHANNELS

Here, the channel is shown transferring data from the left branch to the right branch. If
the left branch reaches point a before the right branch reaches point b, the left branch
waits at point a until the right branch reaches point b.

Communication without synchronization

If you are using a channel FIFO, the left branch will not have to wait at point a if there is
space in the FIFO. Instead, it can write to the FIFO once per clock tick until the FIFO is
full. Only then will it have to wait. Each time the right branch reads from the FIFO at
point b, the data at the head of the FIFO is read, and the next piece of data becomes the
head. The right branch must wait if the FIFO is empty.

In this case, the two branches will not be synchronized after every read and write.

Handel-C Language Reference Manual

www.celoxica.com Page 15

2.1.4 Scope and variable sharing

The scope of declarations is based around code blocks. A code block is denoted with {...
brackets. This means that:

• Global variables must be declared outside all code blocks

}

• An identifier is in scope within a code block and any sub-blocks of that block.

variables is illustrated below:

The scope of

Since parallel constructs are simply code blocks, variables can be in scope in two parallel
branches of code. This can lead to resource conflicts if the variable is written to
simultaneously by more than one of the branches. Handel-C states that a single variable

 parallel branch but may be read from by

same variable from several processes, the correct way to do
ich are read from in a single process. This process can use a

l

must not be written to by more than one
several parallel branches.

If you wish to write to the
so is by using channels wh
prialt statement to select which channel is ready to be read from first, and that channe
is the only one which will be allowed to write to the variable.

Handel-C Language Reference Manual

www.celoxica.com Page 16

while(1)
 prialt
 {
 case chan1 ? y:
 break;
 case chan2 ? y:
 break;

se, three separate processes can attempt to change the value of y by sending
, chan1, chan2 and chan3. y will be changed by whichever

variable should not be written to by more than one parallel branch.

 case chan3 ? y:
 break;
 }

In this ca
data down the channels
process sends the data first.

 A single

3 Language basics

nventional C program, a Handel-C program consists of a series of statements
. These statements are contained within a main() function
e the program begins. The body of the main function may be

split into a number of blocks using {...} brackets to break the program into readable

variables and expressions similar to conventional C. There
erations are not appropriate to hardware implementation and

extensions where hardware implementation allows additional functionality.

 statements or functions that
l when targeting hardware because parallelism is

sing hardware. Parallel processes can
communicate using channels. A channel is a point-to-point link between two processes.

3.1 Program structure

Sequential structure

As in a co
which execute sequentially
that tells the compiler wher

chunks and restrict the scope of variables and identifiers.

Handel-C also has functions,
are restrictions where op

Parallel structure

Unlike conventional C, Handel-C programs can also have
execute in parallel. This feature is crucia
the main way to increase performance by u

Handel-C Language Reference Manual

www.celoxica.com Page 17

Overall structure

ucture consists of one o main functions, each associated
 This is unlike conventional C, w n function is permitted.
nly use more than one main fun rts of your program to

fferent cl nction is defined as

ion
d)

larations

 arguments an . This is in line with a
e no nd no

 to. The argc, meters and the return
al C can be r ommunications with an
icroprocesso e program.

ard /* ... */ delimi nts. These comments may not

 NOT */ valid */

 comment marke compiler to
o the next new line. For example

tatement summary

The overall program str r more
with a clock. here only one mai
You would o ction if you needed pa
run at different speeds (and so use di
follows:

ocks). A main fu

Global Declarations

Clock Definit
void main(voi
{
 Local Dec

 Body Code
}

The main() function takes no d returns no value
hardware implementation where there ar
environment to return values

 command line arguments a
argv and envp para

value familiar from convention eplaced with explicit c
external system (e.g. a host m r) within the body of th

3.2 Comments

Handel-C uses the stand ters for comme
be nested. For example:

/* Valid comment */

/* This is /*

Handel-C C++ style // also provides the
ignore everything up t

r which tells the

x = x + 1; // This is a comment

3.3 S

Handel-C Language Reference Manual

www.celoxica.com Page 18

Statement

Sequential execution

t ; Test ; Iter){...}

Assignment

; Increment

 Decrement

le; Increment

-- Variable; Decrement

Var

Variable

Variable *= Expression; Multiply and assign

Variable /= Expression; Divide and assign

Variable %= Expression; Modulo and assign

Shift left and assign

Variable >>= Expression; Shift right and assign

^= Expression; Bitwise XOR and assign

le; Channel input

Channel ! Expression; Channel output

[else {statement}]

pilation

while (Expression) {statement} Iteration

do {...} while (Expression); Iteration

for (Init ; Test ; Iter) {...} Iteration

break; Loop, switch and prialt termination

continue; Resume execution

return[([Expression])]; Return from function

goto label; Jump to label

switch (Expression) {statement} Selection

prialt {statement} Channel alternation

Meaning

par {...}

seq {...}

Parallel execution

par (Ini Parallel replication

seq (Init ; Test ; Iter){...} Sequential replication

Variable = Expression;

Variable ++

Variable --;

++ Variab

iable += Expression; Add and assign

-= Expression; Subtract and assign

Variable <<= Expression;

Variable &= Expression; Bitwise AND and assign

Variable |= Expression; Bitwise OR and assign

Variable

Channel ? Variab

if (Expression) {statement} [else
{statement}]

Conditional execution

ifselect (Expression) {statement} Conditional com

Handel-C Language Reference Manual

www.celoxica.com Page 19

releasesema() Make semaphore available after use of
sema expression

 ndition

ts, signa lements are included in the set of

ssignment group of d the increment and decrement

try

try{...}
reset(Condition){statement}

Perform statements on reset co

delay;

Single cycle delay

Note: RAM and ROM elemen ls and array e
variables above. However,

ram x [3];

x[0]++;
is invalid.

 The a operations an
operations are included a o reflect the fact that Handel-C s statements t
expressions cannot contain side effects.

3.4 Operator summary
The following table lists all operators the top have the highest precedence and

the lowes e. Entries within the same group have
ence of s expected from conventional C. For

ion befo tion. Brackets may be used to ensure the
nventional C.

t true operators in Handel-C.

. Entries at
entries at the bottom have t precedenc
the same precedence. Preced
example:

 operators is a

x = x + y * z;

This performs the multiplicat re the addi
correct calculation order as in co

Note that assignments are no

Handel-C Language Reference Manual

www.celoxica.com Page 20

Operator Meaning

trysema Test if semaphore owned. Take if not

pr)

ion [Expression]

xpression [Constant] Bit selection

Expression [Constant: Bit range extraction. One of the two constants may
be omitted (but not both).

tion call

nce

Logical NOT

~ Expression Bitwise NOT

ession Unary

ression Unary

 pointer to operand

on that the operand points to

ssion) Width of expression

casting

Bs

Bs

cation

on

Subtraction

ion Shift left

Expression @ Expression Concatenation

Expression < Expression Less than

Expression > Expression Greater than

Expression <= Expression Less than or equal

Expression >= Expression Greater than or equal

Expression == Expression Equal

Expression != Expression Not equal

Expression & Expression Bitwise AND

Expression ^ Expression Bitwise XOR

select(Constant, Expr, Ex Compile-time selection

Express Array or memory subscripting

E

Constant]

functionName (Arguments) Func

pointerToStructure->member Structure reference

structureName.member Structure refere

! Expression

- Expr minus

+ Exp plus

& object Yields

* pointer

width(Expre

Yields object or functi

(Type) Expression Type

Expression <- Constant Take LS

Expression \\ Constant Drop LS

Expression * Expression Multipli

Expression / Expression Division

Expression % Expressi Modulo arithmetic

Expression + Expression Addition

Expression - Expression

Expression << Express

Expression >> Expression Shift right

Handel-C Language Reference Manual

www.celoxica.com Page 21

Expression | Expression Bitwise OR

 && Logical AND

sion ssion Logical OR

on Conditional selection

diagnostic macro to print to stderr

yp mmary

e most common types that may be associated with a variable, and the prefixes for
architectural and compound types are listed below.

Type Width

int See *Note 1

n bits

 | u
defined

Compiler infers width

ned] char 8 bits

[signed | unsigned] short 16 bits

d | u long 32 bits

 | u

peof (Expression) Yields type of object
*Note 1: Width will be inferred by compiler unless the 'set intwidth = n' command

Expression Expression

Expres || Expre

Expressi ? Expr : Expr

assert

3.5 T e su

Th

Common logic types

[signed | unsigned] int n

[signed nsigned] int
un

[signed | unsig

[signe nsigned]

[signed | unsigned] int32 32 bits

[signed nsigned] int64 64 bits

ty

appears before the declaration.

Architectural types

Prefixes to the above types for different architectural object types are:

Handel-C Language Reference Manual

www.celoxica.com Page 22

Prefix Object

mpound types are:

Structure

mpram Multi-port memory

ject

 logic or device

width or logic type

Interfaces connect to logic beyond the Handel-C design, whether on the same or a
different device.

for

ardware implementation.

uage

chan Channel

chanin Simulator channel

chanout Simulator channel

ram Internal or external RAM

rom Internal or external ROM

signal Wire

wom WOM within multi-port memory

Compound types

The co

Prefix Object

struct

Special types

Type Ob

interface Interface to external

sema Semaphore. Has no

3.6 Comparison of Handel-C and ANSI-C

Handel-C has many similarities to ANSI-C (ISO-C). However, Handel-C is a language
digital logic design, which means that the way in which DK interprets it may different to
the way in which compilers interpret ANSI-C for software design. Handel-C has some
extensions to ANSI-C, to allow additional functionality for hardware design. It also lacks
some ANSI-C constructs which are not appropriate to h

This section summarizes the differences between Handel-C and ANSI-C. It is not a
definitive list. Refer to specific sections to see how DK implements each of the lang
constructs.

Handel-C Language Reference Manual

www.celoxica.com Page 23

3.6.1 Handel-C v C: types and type operators

long double. You can
still perform floating-point arithmetic.

l-C has a range of additional types for creating channels and interfaces between
rdware blocks, and for specifying memories and signals. The Celoxica wide
ary provides signed and unsigned compiler-independent implementations of
int64.

specify the size of an array in Handel-C. For example, you couldn't write:

,

 8 //not allowed

static int a = 8; // OK

The Handel-C typeof operator allows you to determine the type of an object at compile
time.

3.6.2 variables

There -C.

metic and
there is

nt
ces

(e.g. use pence or cents instead of pounds or dollars).

If you do need to use floating-point arithmetic, use the Celoxica floating-point library.
This allows you to specify the exact width of the mantissa and exponent. You can
download the floating-point library from the downloads section of the Celoxica support
web site. If you can use fixed-point arithmetic, use the Celoxica fixed-point library. This
is provided in the Platform Developer's Kit.

Handel-C supports all ANSI-C types apart from float, double and

char, short and long are supported to help the porting of code from ANSI-C. However,
it can be better (more efficient in hardware terms) to re-express these as a signed or
unsigned int of a specific width. In Handel-C, ints are not limited to 64 bits.

Hande
different ha
number libr
int32 and

Handel-C also allows all ANSI-C storage class specifiers and type qualifiers, but volatile
and register have no meaning in hardware terms, and are accepted for compatibility
only.

You have to

int ai[SIZE]

and then # define SIZE.

Handel-C variables can only be initialized if they are static, const or global. Otherwise
you must assign a value to them in a statement.

int a =

int a;
a = 8; // OK

 Handel-C v C: floating-point

are no floating-point types (float, double or long double) in Handel

Floating-point arithmetic is more complex than integer or fixed-point arith
tends to require more hardware. If you are porting C code to Handel-C, check if
a way to avoid using floating-points. For example, you might be able to use fixed-poi
values (which have a binary point), or to change the units to remove the decimal pla

Handel-C Language Reference Manual

www.celoxica.com Page 24

3.6.3 Handel-C v C: variable widths and casting

. When you define a Handel-C variable,
For

d 20, use a 5-bit

There is no automatic conversion between signed and unsigned values in Handel-C, you
xplicitly cast them:

Similarly, there is no automatic type conversion. If you wanted to add an int 5 and a
 to 32 bits by using the concatenation

operator. However, it would be more usual to perform arithmetic on ints of specific

nter of the same type except for the
addition or removal of a type qualifier, between signed and unsigned, and between

. a struct with identical elements except for the width of the types).

You ca o

d

pointer to another function type

ferent width

take operator when
t width. For example:

Handel-C widths

Handel-C types are not limited to specific widths
you should specify the minimum width required, to minimize hardware usage.
example, if you have a variable, x, that can hold a value between 1 an
int:

int 5 x;

Casting

have to e

int 12 x;
unsigned int 12 y;
y = x; //not allowed
y = (unsigned) x; //OK

long together, you would need to pad the int

widths.

Pointers can be cast to void and back, to another poi

similar structs (e.g

nn t perform the following casts in Handel-C:

• from a pointer of one type to a pointer of another type (except for those liste
above)

• from a pointer to an integral type

• from an integral type to a pointer

• from a pointer to a function to a

Arithmetic and comparisons on variables of dif

In Handel-C you need to use the concatenation operator or the
performing arithmetic or comparisons on variables of differen

Handel-C Language Reference Manual

www.celoxica.com Page 25

int 12 x;
 8 y;

lowed
 allowed

 y[7] @ y[7] @ y[7] @ y[7] @ y // OK

atively you can use the width adjustment macros in the Celoxica standard macro
y, stdlib.hcl. The adju() macro adjusts the width of unsigned numbers and the

s() macro adjusts the widths of signed numbers. The standard library is now
 part of the Platform Developer's Kit (PDK). If you do not already have a copy

wnload it from the support section of the Celoxica web site.

eof

sizeof in Handel-C. For simple types (signed and unsigned char, int, long
and short), you can use the width operator. For example, sizeof long in C is

xcept that the number of bytes is returned in C
and the number of bits is returned in Handel-C.

el-C v C: side effects

There
statement statement can only contain a single
assignm n

This mean

ndalone statements.

If you iple
single stat
cannot use

If you had

in Handel-C:

int

x = y; // not al
y = x; //not
x =
y = x <-8; // OK; preserves the sign and copies the 7 LSBs

Altern
librar
adj
provided as
of PDK, you can do

siz

There is no

equivalent to width long in Handel-C, e

3.6.4 Hand

are restrictions on how you can use side-effects in Handel-C, because each
must only take one clock cycle. Each

e t, or an increment or a decrement.

s that:

• Shortcut assignments (e.g. +=) must appear as sta
• The initialization and iteration phases of for loops must be statements, not

expressions.

are porting ANSI-C code, complex statements have to be re-written as mult
ements. It is often more efficient to run these statements in parallel. You
 comma operators in Handel-C.

 the following expression written in ANSI-C:

a = b = ++c, d+e;

this could be separated into single statements

Handel-C Language Reference Manual

www.celoxica.com Page 26

seq
{
 ++c;

 a = b;

ld rewrite the same code to run all the statements in parallel:

 a = d + e;

}

ions

 of differences in the way in which functions can be used in ANSI-C

:

• Functions may not be called recursively, since all logic must be expanded at
enerate hardware.

u can only call functions in expression statements. These statements must
her calls or assignments.

ngth parameter lists are not supported.

d-style ANSI-C function declarations (where the type of the parameters is
not specified) are not supported.

ctions take no arguments and return no values.

• You can have more than one main() function. Each main() function is

 must all use the same clock.

• You can have arrays of functions and inline functions. These are useful when

Re-writing recursive functions

• Creating multiple copies of a function.

 b = d + e;

}

However, you cou

par
{
 ++c;

 b = d + e;

3.6.5 Handel-C v C: funct

There are a number
and Handel-C.

In Handel-C

compile-time to g

• Yo
not contain any ot

• Variable le

• Ol

• main() fun

associated with a clock. If you have more than one main() function in the
same source file, they

you are writing parallel code.

If you want to port code that uses recursive functions to Handel-C, the options for
rewriting it include:

• Using recursive macro expressions or recursive macro procedures. (It must be
possible to determine the depth of recursion at compile-time.)

Handel-C Language Reference Manual

www.celoxica.com Page 27

• Re-writing the function to create iterative code. This is relatively easy if the
function is calling itself (simple recursion), and the recursive call is the last
item within the function definition (tail recursion).

The following ANSI-C function has simple tail recursion:

igned long Factorial (unsigned long n)

 if (n==0)

-C as:

d int 32 Factorial (unsigned int 32 n)

nt 32 nfact;
ct = 1;
 (n == 0)

y;

 while (n != 0)
 {

 --n;

at the if...else is required to prevent the possibility of a combinatorial loop if
 while loop is not executed.

C v C: loop statements

ps in Handel-C are slightly different to those in ANSI-C: the initialization and
s. This is because of

restrictions on side effects in expressions in Handel-C.

You need to ensure that loop statements take at least one clock cycle in Handel-C. This

• you cannot have empty loops in Handel-C

uns
{

 return 1;
 else
 return n * Factorial (n-1);
}

It can be re-written in Handel

unsigne
{
 unsigned i
 nfa
 if
 dela
 else
 {

 nfact *= n;

 }
 }
 return nfact;
}

Note th
the

3.6.6 Handel-

for loo
iteration steps are written as statements rather than expression

means that:

Handel-C Language Reference Manual

www.celoxica.com Page 28

• you need to ensure that the body of a loop will always execute at least once,
ive execution point using an if...else.

code:

 0. You could re-write this in

 MyFunction (i);

Note that you need to decrement i before you enter the while body to preserve the order

.

union are of related types (e.g. int, long and char), you can
"reuse" a single variable which is the width of the widest variable in the union. For

union

gle variable of the same width as the long:

unsigned int 32 i;

y casting and using the take

or else provide an alternat

For example, if you had the following ANSI-C

while ((--i) != 0)
{
 MyFunction (i);
}

The while loop would not be executed if i was equal to
Handel-C as:

--i;
if (i != 0)
 while (i != 0)
 {

 --i;
 }
else
 delay;

dependency of the ANSI-C code.

3.6.7 Handel-C v C: unions

If there is no relationship between members of the union, you can use a struct instead

If the members of the

example, if you have the following union in your C code:

{
 unsigned long ul;
 unsigned char uc;
 short ss;
} u;

you could use a sin

You could then get values equivalent to ul, ss and ul b
operator:

Handel-C Language Reference Manual

www.celoxica.com Page 29

u.ul would be written as i

uc would be written as i <-8

be written as (signed) (i<-16)

 A ere is no guarantee about whether ul, uc and ss would share
e, and s ndel-C c bove might not exactly reproduce the behaviour of
SI-C code in your C com

 Handel-C v C: dat and output

oes not have functio lent to scanf() and printf(). You can use
 printf() when y ulating a design, as Handel-C allows you to

ls to Handel-C functions. ely, you can use the Handel-C infile and
eci ations. Both th allow you to debug an algorithm before you

 hardware.

re rgeting hardwa data is passed between different parts of your Handel-
C design ing channels. If your Hand C design will receive data from or send data to

al comp ents, you need fy an interface. These external components
e writt in EDIF, Verilo L, or they could be an additional component

specif d in Ha del-C.

and l-C v C: memory allocation

emory alloca on is not relevant when you are targeting hardware, so Handel-C has no
valent of malloc and free.

You can use Handel-C to create RAM or ROM blocks on an FPGA or PLD, or interface to

3.6.10 Handel-C v C: standard library

The standard library in Handel-C is called stdlib.hcl. This has no relationship to the C
library, stdlib.lib or to stdio.lib.

stdlib.hcl contains bit manipulation and arithmetic macros.

The standard library is now provided as part of the Platform Developer's Kit (PDK). If you
do not already have a copy of PDK, you can download it from the support section of the
Celoxica web site.

3.6.11 C and Handel-C types and objects

u.

u.ss would

Note that in NSI-C th
storag o the Ha ode a
the AN piler.

3.6.8 a input

Handel-C d ns equiva
scanf() and ou are sim
make cal
outfile sp

 Alternativ
ese methodsfic

build it in

When you a
us

 ta re,
el-

 to speciextern on
might b

ie
en
n

g or VHD

3.6.9 H e

M
equi

ti

off-chip memory.

Handel-C Language Reference Manual

www.celoxica.com Page 30

In both

Con
C on only

doub chan
float ram
nio rom

 wom

 mpram

 sign

chanin

atic chan

xtern unde

ruct interface

atile <>

d inline

nst typeof

to

ned

edef

s ons in C and Handel-C

ventional
ly

Handel-C

int
unsigned

le

char u n
long

short

enum

register

al

st out

e fined

st

vol

voi

co

au

sig

typ

3.6.12 Expre si

Handel-C Language Reference Manual

www.celoxica.com Page 31

In both Conventional
C only

Handel-C
only

* (pointer
n)

sizeof select(…)

dress of) width(…)

@

 \\

n)
<-

[:]

 let…in

>=

indirectio

& (ad

-

+

*
io(multiplicat

/

%

<<

 >>

>

<

<=

==

!=

& (bitwise and)

^

|

? :

[]

!

&&

~

||

->

Handel-C Language Reference Manual

www.celoxica.com Page 32

3.6.13 Statements in C and Handel-C

In both Handel-C only

par
 delay

ode that executes in parallel.

ment
e same clock cycle. If the par keyword is not used,

orm

el

t is ready
for a read or write.

sema

{;}
switch
do … while ?
while !
if … else prialt
for (;;) seq
break ifselect
continue
return
goto
assert assert is an expression in Handel-C and not the

same as in ANSI-C

3.7 Handel-C constructs not found in ANSI-C
Handel-C is designed to target hardware. It allows you to specify timing and to target
components such as memory, ports, buses and wires. One of the most important
differences to ANSI-C is the ability to create c

Handel-C constructs that are not found in ANSI-C are listed below.

Parallelism

The par keyword specifies that a block of code should execute in parallel. Each state
within the block is executed in th
statements within a code block are executed sequentially. You can use the seq keyword
to make this more explicit.

Channels allow communication between parallel branches of code. They are specified
using the chan keyword, or by chanin and chanout when you are simulating code. You
can read from and write to channels using statements of the f

Channel ? Variable; //reads from a chann
Channel ! Expression; //writes to a channel

prialt statements are used with multiple channels, to select the first one tha

Semaphores () allow you to coordinate the use of resources that are shared between
parallel branches of code. The trysema() construct tests to see if the sema is owned.

Handel-C Language Reference Manual

www.celoxica.com Page 33

The releasesema() construct frees a semaphore once it is no longer needed by a
resource.

inline functions, arrays of functions, macro procedures and macro expressions help you

 construct specifies the clock source for each main() function. You can
have more than one clock interfacing with your design by specifying more than one

n
 can

also use it to specify that a port on an interface is used to drive the Handel-C clock.

The intime and outtime specifications can be used to specify the maximum delay
nt interacting with an interface, (e.g. the port reading

c code

time.
owever, macro procedures, macro

 in combination with the

t compile time.

e

 device you want to
 code. You can also set the device using the DK GUI.

to create multiple copies of functions. You need copies of a function if it is to be accessed
by parallel branches of code.

Timing

The set clock

main() function. If you want to simulate code, you can set a "dummy" clock. You can
specify the frequency of a clock using the rate specification. The clockport specificatio
can be used to assign a dedicated clock input resource on your target device. You

Assignments and delay take one clock cycle in Handel-C. Everything else is "free". The
delay statement does nothing, but takes one clock cycle. This can be used to avoid
timing conflicts, such as combinational loops.

between an interface and an eleme
data into a RAM).

Compile-time selection and expansion and generi

When you write code to target hardware, all logic needs to be expanded at compile
This means that you cannot use recursive functions. H
expressions and shared expressions allow compile-time recursion
select, ifselect and let...in constructs.

The select operator allows you to select between expressions at compile time. It is
similar to the conditional operator (cond ? expr1: expr2), but no hardware is
generated for the conditional.

The ifselect construct is similar to an if...else, but selects between alternative
blocks of code a

The typeof operator allows the type of an object to be determined at compile time. Th
undefined keyword specifies that the compiler should infer the width of a variable. These
constructs allow you to create parameterizable code. For example, the Celoxica fixed-
point library uses macros to pass the integer width and fraction width of a fixed-point
number into code that creates a struct to hold the number.

Targeting hardware; FPGAs and PLDs

The set family and set part constructs allow you to specify the
target in your source

Targeting hardware; memory

The ram and rom keywords allow you to create on-chip RAM and ROM, and to interface to
external RAM and ROM. If you want to create a block RAM, use the block specification.

Handel-C Language Reference Manual

www.celoxica.com Page 34

To interface to off-chip RAMs or ROMs, use the offchip specification. The addr, data,
we, cs, oe and clk specifications define the pins used between the FPGA/PLD and
external RAM or ROM.

An mpram is a multi-ported RAM. This allows you to read from and write to a RAM within
the same clock cycle, or to make two read or two write accesses. Individual ports can be
specified as read/write, read-only and write-only using the ram, rom and wom keywords.

If you want to interface to a dedicated memory resource on the FPGA/PLD, use the ports
specification.

The clkpulselen, rclkpos and wclkpos specifications allow you to synchronize a RAM
clock with the Handel-C clock. The westart, welength and wegate specifications allow
you to specify timing of a RAM clock that is asynchronous to the Handel-C clock.

Targeting hardware; wires

If you specify a signal in Handel-C, this creates a wire in hardware. A signal takes on
the value assigned to it but only for that clock cycle. The value assigned to it can be read
back during the same clock cycle.

Targeting hardware; resets

set reset allows you to reset your device into a known state. It can also be used to
configure devices that are not in a known state at start up.

try...reset allows you to specify some actions that occur if a particular condition
becomes true within a particular block of hardware.

Interfacing to existing modules and to peripherals

Handel-C interfaces can be used to connect to external devices or to external logic on
your target FPGA/PLD, such as other programs written in Handel-C, VHDL or Verilog.

Port-type interfaces allow you connect to external logic. The bind, properties and
std_logic_vector specifications allow you to parameterize interfaces connecting to
external code.

Bus-type interfaces connect to pins connected to peripheral devices. The standard
specification selects the I/O standard for interface pins and the strength specification
determines the drive current. You can use the dci specification if you want to use digital
controlled impedance. The pull specification allows you to create a pull up or pull down
resistor for bus pins. The speed specification allows you to specify the slew rate for the
output buffer on pins.

The extern "language" construct is the same as that found in C++. It allows you to
connect to blocks of ANSI-C or C++ code for co-simulation.

Bit manipulation

Handel-C types are not constrained to a specific width, so you can specify the exact
width needed for a variable to minimize hardware usage. Bit manipulation is required to
connect objects of different widths. In addition to the ANSI-C bit manipulation operators,

Handel-C Language Reference Manual

www.celoxica.com Page 35

Handel-C provides the take and d
bits of a variable, and the concate

rop operators, which take and drop the least significant
nation operator, to extend variable width. The bit

selection operator, allows you to select individual bits of a variable.

Handel-C Language Reference Manual

www.celoxica.com Page 36

4 Declarations

4.1 Introduction to types

Handel-C uses two kinds of objects: logic types and architecture types. The logic types
specify variables. The architecture types specify variables that require a particular sort of

Both kinds are specified by their scope (static or extern), their size and their type.
Architectural types are also specified by the logic type that uses them.

ed types (such as structures, arrays or functions) but

 and static to define the scope of any

unctions can have the storage class inline to show that they are expanded in line,
being shared.

e qual

del-C su type qualifiers const and volatile to increase compatibility with
used to further qualify logic types.

ambigu

del-C su ts the extension < >. This can be used to clarify complex declarations of
itectura

.1 Han and widths

ucial diff n Handel-C and conventional C is Handel-C’s ability to handle
r ntional C is targeted at general-purpose
s 32 bit values well but cannot easily handle other
e reason to be tied to these data widths and

o Handel-C has been extended to allow types of any number of bits.

Handel-C has also been extended to cope with extracting bits from values and joining
 wider values. These operations require no hardware and can

ance improvements over software.

hardware architecture (e.g., ROMs, RAMs and channels).

Both types can be used in deriv
there may be some restrictions on the use of architectural types.

Specifiers

The type specifiers signed, unsigned and undefined define whether the variable is
signed and whether it takes a default defined width.

You can use the storage class specifiers extern
variable.

F
rather than

Typ ifiers

Han pports the
ANSI-C. These can be

Dis ator

Han ppor
arch l types.

4.1 del-C values

A cr erence betwee
values of a
microproce

bitrary width. Since conve
sors it handles 8, 16 and

widths. Wh n targeting hardware, there is no
s

values together to form
provide great perform

Handel-C Language Reference Manual

www.celoxica.com Page 37

When writing programs in Handel-C, care should be taken that data paths are no wider
than necessary to minimize hardware usage. While it may be valid to use 32-bit values
for all items, a large amount of unnecessary hardware is produced if none of these values

t overflow their width. This is more of an issue
cause variables should be just wide enough to

r).

type with a different width. Use the
th.

String constants are allowed in Handel-C. A string constant consists of a string of
characters delimited by double quotes ("). They will be stored as a null-terminated array

. String constants can contain any of the special characters
ters can be initialized with string constants, and string

ters:

\r carriage return

tab

single quote

te

ts

. Decimal constants are written as simply the
number while hexadecimal constants must be prefixed with 0x or 0X, octal constants

exceed 4 bits.

Care must also be taken that values do no
with Handel-C than with conventional C be
contain the largest value required (and no wide

You cannot cast a variable or expression to a
concatenation operator to zero pad or sign extend a variable to a given wid

4.1.2 String constants

of characters (as in ANSI-C)
listed below. Arrays and poin
constants can be assigned to pointers. If a string constant is assigned to a pointer, the
storage for the string will be created implicitly.

Special charac

\a alert

\b backspace

\f formfeed

\n newline

\t

\v vertical tab

\\ backslash

\? question mark

\'

\" double quo

\onumber octal number e.g. \o77

\xnumber hexadecimal number e.g. \xf3

4.1.3 Constan

Constants may be used in expressions

Handel-C Language Reference Manual

www.celoxica.com Page 38

must be prefixed with a zero and binary constants must be prefixed with 0b or 0B. For

 /* Decimal */

 /* Octal */

The width of a constant may be explicitly given by 'casting'. For example:

nfer the width of the constant
from its usage.

The basic logic type is an int. It may be qualified as signed or unsigned. Integers can
signed a width by the programmer or the compiler will attempt to infer a

width from use.

Enumerati ums) allow you to define a specified set of values that a variable of
this type m

There are derived types (types that are derived from the basic types). These are arrays,
pointers, st tions. The non-type void enables you to declare
empty r that do not return a value. The typeof type operator
allows you to reference the type of a variable.

 for variables: int. By default, integers are signed.
 qualified with the unsigned keyword to indicate that the variable

s positive integers or 0. For example:

13-bit non-negative
integer y. In the second example here, the int keyword is optional. Thus, the following
two declarations are equivalent.

unsigned int 6 x;
unsigned 6 x;

You may use the signed keyword to make it clear that the default type is used. The
following declarations are equivalent.

example:

w = 1234;

x = 0x1234; /* Hexadecimal */

y = 01234;

z = 0b00100110; /* Binary */

x = (unsigned int 3) 1;

Casting may be necessary where the compiler is unable to i

4.2 Logic types

be manually as

on types (en
ay hold.

ructs bit fields, and func
pa ameter lists or functions

4.2.1 int

There is only one fundamental type
The int type may be
only contain

int 5 x;
unsigned int 13 y;

These two lines declare two variables: a 5-bit signed integer x and a

Handel-C Language Reference Manual

www.celoxica.com Page 39

int 5 x;
 int 5
d 5 x;

ge of an 8-bit signed integer is -128 to 127 while the range of an 8-bit unsigned
r is 0 to usive. This is because signed integers use 2's complement

representation.

You a
example:

int 17 x, y, z;

This declares three 17-bit wide signed integers x, y and z.

width to be declared. The width may be undefined, an expression, or nothing.

e:

long b;

 unsigned int 7 c;

r porting

har,
d long. For example:

plementation dependent in ANSI-C.
 of these types in Handel-C is as follows:

signed x;
signe

The ran
intege 255 incl

 m y declare a number of variables of the same type and width simultaneously. For

4.2.2 Signed | unsigned syntax

Signed | unsigned is declared in the same way as in ANSI-C except that Handel-C
allows the

For exampl

• int a;

•
•

• signed undefined d;

• long signed int e;

4.2.3 Supported types fo

Handel-C provides support for porting from conventional C by allowing the types c
short an

unsigned char w;
short y;
unsigned long z;

Note that these are fixed-widths in Handel-C, and im
The widths used for each

Handel-C Language Reference Manual

www.celoxica.com Page 40

Type Width

char 8 bits (signed)

short 16 bits

long 32 bits

d more efficient hardware will be produced by using variables of the Smaller an
smallest possible width.

4.2.4 Inferring widths

The Handel-C compiler can infer the width of variables from their usage. It is therefore
ly define the width of all variables and the undefined

keyword can be used to tell the compiler to try to infer the width of a variable. For
example:

x = y;

In this example the variable x has been declared to be 6 bits wide and the variable y has

to this value.

er cannot infer all the undefined widths, it will generate errors detailing

e equivalent:

ovides an extension to allow you to override this behaviour to ease porting
t been

This is done as follows:

set intwidth = 16;

int x;
unsigned int y;

not always necessary to explicit

int 6 x;
int undefined y;

been declared with no explicit width. The compiler can infer that y must be 6 bits wide
from the assignment operation later in the program and sets the width of y

If the compil
which widths it could not infer.

The undefined keyword is optional, so the two definitions below ar

int x;
int undefined x;

Handel-C pr
from conventional C. This allows you to set a width for all variables that have no
assigned a specific width or declared as undefined.

Handel-C Language Reference Manual

www.celoxica.com Page 41

This declares a 16-bit wide signed integer x and a 16-bit wide unsigned integer y. Any
in the set intwidth instruction, including undefined.

 can still declare variables that must have their width inferred by using the undefined
or example:

This example declares a variable x with a width of 27 bits and a variable y that has its
 This example also illustrates that the int keyword may

 undefined:

of variables in the same way that arrays are declared in

This declares 7 registers each of which is 6 bits wide. Accessing the variables is exactly
e, to access the fifth variable in the array:

n index of 0 and the last has an
riables in the array.

oop, the

width may be used

You
keyword. F

set clock = external "p1";
set intwidth = 27;

void main(void)
{
 unsigned x;
 unsigned undefined y;
}

width inferred by the compiler.
be omitted when declaring unsigned integers.

You may also set the default width to be

set intwidth = undefined;

4.2.5 Arrays

You can declare arrays
conventional C. For example:

int 6 x[7];

as in conventional C. For exampl

x[4] = 1;

Note that as in conventional C, the first variable has a
index of n-1 where n is the total number of va

When a variable is used as an array index, as is often done when using a for l
variable must be declared unsigned.

Example

This loop initializes all the elements in array ax to the value of index.

Handel-C Language Reference Manual

www.celoxica.com Page 42

unsigned int 6 ax[7];
unsigned index;

}

Multidimensional arrays

ulti-dimensional arrays of variables. For example:

 to declare a pointer to the whole of an array, rather than an individual
"*" in brackets. You must also use

e array:

gned 4 MyArray [2];

ent

// Declare a pointer to the entire array - brackets are required

itialize pointer to point to an individual array element
 pointer_to_array_element = &MyArray[0];

index=0;
do
{
 ax[index] = (0 @ index);
 index++;

while(index <= 6);

Note that the width of index has to be adjusted in the assignment. This is because its
width will be inferred to be 3, from the array dimension (the array has 7 elements, so
"index" will only ever need to count as far as 6).

You can declare m

unsigned int 6 x[4][5][6];

This declares 4 * 5 * 6 = 120 variables each of which is 6 bits wide. Accessing the
variables is as expected from conventional C. For example:

y = x[2][3][1];

Pointers to arrays

If you want
element, you must enclose the variable name and the
brackets when initializing a pointer to an entir

// Declare an array
unsi

// Declare a pointer to an array elem
unsigned 4 *pointer_to_array_element;

unsigned 4 (*pointer_to_array) [2];

void main(void)
{
 // In

Handel-C Language Reference Manual

www.celoxica.com Page 43

 // Initialize pointer to point to the entire array - brackets are
required
 (pointer_to_array) = &(MyArray);
 ...
}

If you wanted to view all the referenced values MyArray in the Watch window during
simulation, you would need to type in "(*pointer_to_array)".

th possible. For instance, in
 need only go up to seven and will therefore be a three bit number. If

 represent the index, it too will be three bits.

struct defines a data structure; a grouping together of variables under a single name.
 structure can be identified by a type name. The variable members of

truct

mber_Name

 member-list
me {,instance_Name}];

i-colons.

t structure type. Alternatively, you
may declare variables as follows:

Storage

ugh channels and signals.

4.2.6 Array indices

When an array is declared, the index has the smallest wid
array[8], the index
a variable is declared to

4.2.7 struct

The format of the
the structure may be of the same or different types. Once a structure has been declared,
its type name can be used to define other structures of the same type. Structure
members may be accessed individually using the cons

struct_Name.me

Syntax

A structure type is declared using the format

struct [type_Name]
{

} [instance_Na

member-list is a list of variable definitions terminated by sem

The use of instance_Names declares variables of tha

struct type_Name instance_Name;

• Structures may be passed thro

• Structures may be stored in internal memory elements.

• Structures cannot be stored in off-chip RAMs.

Handel-C Language Reference Manual

www.celoxica.com Page 44

If a structure contains a memory element, a channel, or a signal, it cannot be stored in
ot be passed to a function "by value", it cannot be
ed through a channel or a signal.

igned to) another
t be performed in a single clock cycle.

y not be sent directly to interfaces.

re human struct type
{

ed int 8 age; // Declare member types

ister;
ter.age = 25;

ation

list initializer to initialize static or const structures or structures with global
ist initializers may be flat or structured.

Boris

 int 8 a, b;

, 2, 3}, 4, 5};

.8 enum

m specifies a list of constant integer values, for example:

enum weekdays {MON, TUES, WED, THURS, FRI};

is case MON) has a value of 0, the next 1, and so on, unless explicit
values are specified. If not all values are specified, values increment from the last

o int

To specify enum values

another memory element, it cann
assigned to and it cannot be pass

If a structure contains a memory element, it cannot be assigned (or ass
structure, as the assignment canno

Whole structures ma

Example

struct human // Decla

 unsign
 int 1 sex;
 char name[25];
}; // Define human type

struct human s
sis

Initializ

You can use a
scope. L

struct
{
 int 12 v[3];

};
static struct Boris b = {{1

4.2

enu

The first name (in th

specified value.

If you do not specify a width for the enum, the program must contain information from
which the compiler can infer the width.

You can declare variables of a specified enum type. They are effectively equivalent t
undefined or unsigned undefined. The signedness is inferred from use.

Handel-C Language Reference Manual

www.celoxica.com Page 45

enum weekdays {MON = 9, TUES, WED, THURS, FRI};

f an enum

, WED, THURS, FRI};

 a variable of type enum

 values to a variable

ow to infer the width of an enum. The cast ensures the
h associated with it.

m

B,

ype of structure member consisting of a specified number of bits. The
ach field is separated from the field name by a colon (:). Each element can be

fy the width of integers in
rd structure. In ANSI-C, bit

e specified bits are accessed, the rest are
ation dependent. There is no padding in Handel-

C, so nothing can be assumed about it.

To specify the width o

enum weekdays {MON = (unsigned 4)9, TUES

To declare

enum weekdays x;

To assign enum

static int x = MON;

Example

The example below illustrates h
enumerated variable has a widt

set clock = external "P1";
typedef enu
{
 A,

 C = 43,
 D
} En;

void main(void)
{
 En num;
 int undefined result;

 num = (int 7)D;

 result = num;
}

4.2.9 Bit fields

A bit field is a t
length of e
accessed independently. Since Handel-C allows you to speci

ay of specifying a standabits, a bit field is merely another w
fields are made up of words, and only th
padded. Padding in ANSI-C is implement

Handel-C Language Reference Manual

www.celoxica.com Page 46

Syn

struct [t
{
 field_Type field_Name: field_Width
 ...

 ;

struct structure

ed int 1 value;
d int 1 state;

{
 : 1;

 : 1;
}signa ;

4.3
A point
that it p in

type * m

Pointer tion with the unary operator &, which

 address of object to ptr
x = *ptr; // x is now 6

 //object is now 12

tax

ag_name]

} [instance_names]

Example

This example defines an identical array of flags as a structure and as a bit field.

{
 unsigned int 1 LED;
 unsign
 unsigne
}outputs;

struct bitfield

 unsigned int LED
 unsigned int value : 1;
 unsigned int state

ls

Pointers

er declaration consists of *, the name of the pointer and the type of the variable
o ts to.

Na e

s are used to point to variables in conjunc
gives the address of an object. To set a pointer to point to a variable, you assign the
address of the variable to the pointer. For example

int 8 *ptr; //declare a pointer to an int 8
int 8 object, x;
object = 6;
x = 10;
ptr = &object; //assigns

*ptr = 12;

Handel-C Language Reference Manual

www.celoxica.com Page 47

 The behaviour of uninitialized pointers is undefined. De-referencing an
uninitialized pointer during simulation will result in a run-time error, after
which the simulator will terminate.

Casting pointers

In Handel-C, you may only cast void pointers (void * pointerName) to a different type.
n object pointed to, and

ions are the standard casting restrictions in

 by casting, assignment or comparison. Void * must

rithmetic

 pointer because the size of the object being
pointed to is not known.

an array or memory
e same array or memory

• Compare two pointers for equality (using != or ==)

er to NULL

 pointer beyond the extent of the

ch an
address (the behaviour of the dereference would be undefined). This "one-beyond"

All other pointers may only be cast to change the sign of a
ile. These restrictwhether it is const or volat

Handel-C.

You can change a void pointer's type
have a consistent type so:

void *p;
int 6 *s;
int 7 *t;
p = s;
p = t; //invalid

Pointer a

You cannot perform arithmetic on a void

• Valid pointer operations are:

• Assign a pointer to another pointer of the same type

• Add a pointer and an integer

• Subtract an integer from a pointer

• Subtract or compare (using <, <=, > or >=) a pointer to
member with another pointer to a member of th

• Assign or compare a point

The result of subtracting or comparing pointers to members of different arrays or
memories or to other objects is undefined.

The behaviour of arithmetic on pointers that moves the
object is undefined. An exception is that an address one element beyond an array or
memory (at the high end) is valid, but it is not valid to dereference a pointer at su

address is useful for loops.

Handel-C Language Reference Manual

www.celoxica.com Page 48

Examples

Single or an element of Array,
 or Memory.

rArray [20];

p = & Single; ++ p; // defined (valid address), but ...
/ ... undefined behaviour

, i = 4;

test = (p == q); // meaningful (false in this case)

test = (p == q); // meaningful (false for pointers into different objects)

andel-C are similar to those in conventional C. They provide the address of a
a piece of code. This enables you to access variables by reference rather than

rator (*) is the same as it is in ANSI-C. It is used to de-reference

4.3.2 Pointers to functions

 function), the address operator is optional. The syntax is

*pointerName)(parameter list);

at the end of the declaration declare the pointer to be a pointer to a
he pointerName declares it to be a pointer declaration.

In the examples below, p and q can point to any part of
AnotherArray

int undefined i;
int 4 Single, Array [10], Anothe
ram int 4 Memory [10];
int 4 * p, * q;
unsigned int 1 test;

p = & Single;
p += 2; // undefined behaviour (invalid address)

* p = 0; /
p = & (Array [4]);
p += 2; // now, p = & (Array [6])
p = Array; q = & (Array [4]);
i = q - p; // meaningful; now
test = (p < q); // meaningful (true in this case)

p = Array; q = AnotherArray;
i = q - p; // undefined behaviour
test = (p < q); // undefined behaviour

4.3.1 Pointers and addresses

Pointers in H
variable or
by value.

The indirection ope
pointers (i.e. to access objects pointed to by pointers).

The "address of" operator (&) works as it does in ANSI-C.

If you point to code (a

returnType (

The parentheses
e * before tfunction. Th

Handel-C Language Reference Manual

www.celoxica.com Page 49

There is the standard C type ambiguity between the declaration of a function returning a
ter and a pointer to a function. To ensure that * is associated with the pointer name

return type, you need to use parentheses

functionName(); //function returning pointer

es

interfaces, you must ensure that you declare a pointer to an
o it (much as when you declare a

annot combine the definition of an object with the declaration

 members of the interface must have the same name in the declaration of the pointer
type as in the definition of the interface object which you assign the pointer to.

//declaration of pointer to interface of sort bus_out

an be used, as in ANSI-C. It is used to access the
ure is referenced through a pointer.

ruct S

a, b;
s, *sp;

sp->b = sp->a;

e

tructure pointers between structures with the same member types and
names. For example:

poin
rather than the

int 8 *

and

int 8 (* pointerName)(); //pointer to function

4.3.3 Pointers to interfac

When declaring pointers to
interface sort and then assign a defined interface t
pointer to a function). You c
of a pointer to it.

The

Example

interface bus_out() *p(int 2 x);
interface bus_out() b(int 2 x=y); //interface definition
p=&b; // p now points to b

4.3.4 Structure pointers

The structure pointer operator (->) c
members of a structure, when the struct

st
{
 int 18
}
sp = &s;
s.a = 26;

The last line accesses the member variables of structure s through pointer sp. Becaus
the pointer is being used to access the structure, the -> operator is used to refer to the
member variables.

sp->a = (*sp).q

You can cast s

Handel-C Language Reference Manual

www.celoxica.com Page 50

struct S1
{
 int 6 x;

;

set clock = external;

Ptr1;

 r = st1.x; //r = 7

4.3.5

The ind NSI-C. It is used to de-reference
pointers (i to by pointers).

be used: pointers to arrays, pointers to channels, pointers to
signals, pointers to memory elements, pointers to structures, pointers to pointers, arrays

Example: pointer assignment

b), and a pointer to an
er

ble cha. The third line simply assigns a value to

} st1;

struct S2
{
 int 6 x
} st2;

void main (void)
{
 int r;
 struct S1 *structPtr1;
 struct S2 *structPtr2;
 structPtr1 = &st1;
 structPtr2 = (struct S2 *)struct
 structPtr2->x = 7;

}

address and indirection operators

irection operator * is the same as it is in A
.e. to access objects pointed

The address operator (&) works as it does in ANSI-C.

The following can also

of pointers.

unsigned char cha, chb, *chp;

chp = &cha;
cha = 90;

chb = *chp;
chp = &chb;

The first line declares two unsigned variables (cha and ch
unsigned (chp). The second line assigns the address of cha to pointer chp. In oth
words, pointer chp now points to varia

Handel-C Language Reference Manual

www.celoxica.com Page 51

cha. The fourth line dereferences pointer chp, to access what it's pointing to, which is
cha. In other words, chb is assigned the value of the object pointed to by chp. The
line assign

last
s the address of chb to pointer chp. In other words, pointer chp now points to

struct S

} s1, s2, *sp, **spp;

This declares two variables of type struct S (s1 and s2), a pointer to a variable of this
a pointer to a variable of this type (spp). The next line

tructure s1 to pointer sp (pointer sp to point to structure s1).
he address of pointer sp to pointer spp (pointer spp to point to

renced

pes are:

d to communicate between parallel processes)

es (used to connect to pins or provide signals to communicate with
external code)

memories (rom, ram, wom and mpram)

 signal (declares a wire).

 help clarify the definitions of memories,

 Channels

Handel-C provides channels for communicating between branches of code executing in
parallel. One branch writes to a channel and a second branch reads from it.

Channels are declared with the chan keyword. For example:

chan int 7 link;

variable chb.

Example: pointer to pointer assignment

{
 int 6 a, b;

sp = &s1;
spp = &sp;
s2 = **spp;

type (sp), and a pointer to
assigns the address of s
The following line assigns t
pointer sp). The last line dereferences pointer spp twice, and it assigns the derefe
value, which is s1, to structure s2 (i.e. s2 now equals s1).

4.4 Architectural types

The architectural ty

• channels (use

• interfac

•
•

The type clarifier < > has been provided to
channels and signals.

4.5

Handel-C Language Reference Manual

www.celoxica.com Page 52

The width and type of data sent do
cha

wn the channel must be of the same width and type
as the nnel. The width and type of a channel can sometimes be inferred by the

d. The channel can be an entry in an
ay of channels, or be pointed to by a channel pointer.

t channel that is ready to communicate from a list of
annels, use the prialt statement.

l into a FIFO, use the fifolength specification. This
mber of data stores of the same width as the

chanout to specify interfaces to the
annels but can be addressed in a

ns];

ading from a channel

Channel ? Variable;

he channel to the variable. It may also be read to a

rrect type.

 {

 Bill ? Res;

Handel-C compiler, if they are not explicitly declare
arr

If you want to select the firs
ch

If you wish to convert the channe
creates a FIFO with the specified nu
channel.

If you are simulating code, you may use chanin and
simulator. These do not represent architectural ch
similar way.

Syntax

chan [logicType] Name [with specificatio

 Re

This assigns the value read from t
signal, an array element, RAM element or WOM element.

Writing to a channel

Channel ! Expression;

This writes the value of the expression to the channel. Expression may be any
expression of the co

Example

set clock = external;
void main(void)
{
 unsigned 8 Res;
 chan Bill;

 par

 Bill ! 23;

 }
}

Handel-C Language Reference Manual

www.celoxica.com Page 53

4.5.1 FIFO code example

nsigned 8 a,b,c,d ;

 ch?a; // FIFO becomes <2>, a becomes 1
3; // FIFO becomes <2,3>

h?b; // FIFO becomes <3>, b becomes 2

FO becomes <4>
h!5; // FIFO becomes <4,5>

 ch?d; // FIFO becomes <5>, d becomes 4
 c
}

han unsigned int 5 x[6];

his is equivalent to declaring 6 channels each of which is 5 bits wide. A channel can be
 for the nth element is

It is also possible to declare multi-dimensional arrays of channels. For example:

chan unsigned int 6 x[4][5][6];

This declares 4 * 5 * 6 = 120 channels each of which is 6 bits wide. Accessing the
channels is similar to accessing arrays in conventional C. For example:

x[2][3][1] ! 4; // Output 4 on channel

4.5.3 Restrictions on channel accesses

No two statements may simultaneously write to or simultaneously read from a single
channel.

chan unsigned 8 ch with { fifolength=2 };
{
 u

 ch!1; // FIFO becomes <1>
 ch!2; // FIFO becomes <1,2>

 ch!
 c
 ch?c; // FIFO becomes empty, c becomes 3
 ch!4; // FI
 c

h!6; // FIFO becomes <5,6>

4.5.2 Arrays of channels

Handel-C allows arrays of channels to be declared. For example:

c

T
accessed by specifying its index. As with variable arrays, the index
n-1. For example:

x[4] ! 3; // Output 3 on channel x[4]
x[3] ? y; // Input to y from channel x[3]

Handel-C Language Reference Manual

www.celoxica.com Page 54

par
{
 out ! 3 // Undefined: simultaneous send to a channel

result, as it attempts to write simultaneously to a single
el. Similarly, the following code will not work because an attempt is made to read

eously from the same channel:

 x; // Undefined: simultaneous receive from a channel

de should not rely on the perceived behaviour of multiple simultaneous

 out ! 4
}

This code will give an undefined
chann
simultan

par
{
 in ?
 in ? y;
}

 Your co
reads and writes, in either simulation or hardware.

You can detect parallel accesses to channel during simulation using the Detection of
s/writes option on the Compiler tab in Project Settings, or by using the

parchan option in the command line compiler.

led within prialt

nnel. The
r must still avoid simultaneous channel accesses, even if the send or receive

simultaneous channel read
-S+

Simultaneous channel access concea

The prialt construct negotiates the readiness of the remote (i.e. non-prialt) end of
channel. It does not resolve conflicts at the local (i.e. prialt) end of the cha
programme
statements are inside a prialt statement.

Handel-C Language Reference Manual

www.celoxica.com Page 55

Examples:

int 4 x, y, z;
chan <int 4> ch1, ch2;

par {
 ch2
 pri t
 {

 case ch2 ! y:

 break;
 }

ltaneously with the statement sending x over ch2,
resulting in an illegal simultaneous access.

There is a conflict even when thing is true, as ch2 undergoes readiness negotiations
with

Restricti een clock domains

If you have channels communicating between clock domains, all writes to a channel must
take place within a single clock domain, and all reads must take place within a single

ock domain.

els to communicate between clock domains, see
 clock domains (see page 169)

 implemented in a different

Channels with FIFO sizes of a power of 2 may have greater latency.

unsigned int 1 thing;

// Code that affects thing

 ! x;
al

 case ch1 ! y:
 break;

// Undefined: simultaneous send

 if (thing)
 ch1 ? z;
 else
 ch2 ? z;
}

If thing is false, then channel ch2 is the only channel that becomes ready to receive, so
the prialt tries to send y over ch2 simu

in the prialt statement and this also requires access to the channel.

ons on channels accesses betw

cl

For more information on using chann
Channels communicating between

4.5.4 Timing and latency in FIFOs

Note that if fifolength is a power of 2, the channel will be
way to when it is not, in order to save memory.

Handel-C Language Reference Manual

www.celoxica.com Page 56

The latency of channels is dependent on the target architecture and the way the code has

 ov

r
interface keyword in Handel-

• external devices

nal logic using channels

e

• an instance name: the name of the instance of the interface sort in Handel-C

Interface definitions may be split into declarations and definitions. You must use a

signed and unsigned types may be passed over interfaces.

been implemented within it.

4.6 Interfaces: erview

All interfaces, except for exte nal (foreign code or off-chip) RAMs are declared with the
C. Interfaces are used to communicate with:

• external logic, such as other Handel-C programs, programs written in VHDL
etc.

You can communicate between blocks of inter

Th interface definition is in two parts:

• an interface sort: the name of the black box or primitive that the interface
connects to

declaration if you want to define multiple instances of the same interface sort, or to use
forward references.

The declaration gives the sort name and port names and types associated with that
interface sort.

The definition gives the instance name, object specifications and the data transmitted for
a single instance of the interface sort.

Only

 Your license may not allow you to use interfaces. If this is the case you can
only interface to external devices using macros provided in any Celoxica
libraries you have licenses for, such as PAL.

4.6.1 Interface declaration

You need to use an interface declaration if you want to define multiple instances of an
ly want a single instance of an

o use an interface definition.

Interfaces of pre-defined sorts do not need to be declared.

The general format of the interface declaration is:

interface sort, or to use forward references. If you on
interface sort, you only need t

Handel-C Language Reference Manual

www.celoxica.com Page 57

interface Sort (ports_in_
 (ports_out_from_Handel

a

A port prototype consists of th the port name. At least one port (whether
to Handel-C or from Handel-C
commas. For example:

nterface (in
 (int 4 OutPort1, int 4

 The name of each

to_Handel-C)
-C);

Sort

ports_in_to_Handel-C
user-defined name or predefined interface sort

Optional. One or more prototypes of ports bringing dat
into the Handel-C code.

Optional. One or more prototypes of ports sending data
from the Handel-C code.

ports_out_from_Handel-C

e port type, and
) must be declared. Port declarations are delimited by

interface MyI t 5 InPort)
 OutPort2);

port in a port_in or port_out interface must be different,
as they will all be built to the top level of the design.

Once you have declared an interface sort, you can define multiple instances of that sort.

You ca
to the poin

4.6.2

interface definition consists of an interface sort, an instance name and data

rface sort. If you want to define multiple
instances, or use forward references to the interface, declare the interface, and then
make multiple definitions of that interface sort. (You do not need to declare interfaces of

 InstanceName (ports_out_from_Handel-C)
 with {GeneralSpecs};

The interface definition creates a named instance of the interface sort, assigns data to be
transmitted to the output ports, and may also specify properties using interface
specifications. You cannot use interface specifications in interface declarations, only in
interface definitions.

n declare pointers to an interface declaration and then assign a defined interface
ter.

 Interface definition

A Handel-C
ports, together with information about each port.

The definition defines a single instance of an inte

predefined sorts.)

The general format of an interface definition is:

interface Sort (ports_in_to_Handel-C)

Handel-C Language Reference Manual

www.celoxica.com Page 58

Sort Pre-defined interface sort, or used-defined sort. (This
ld match the sort in the interface declaration, if you

 using one.)

rts_in_to_Handel-C Definitions of one or more ports bringing data into the
-C code. (Port definitions are described below.)

ce of the interface.
es of an interface

sort, if you make a declaration of the interface sort.)

ts_out_from_Handel-C Definitions of one or more ports sending data from the
Handel-C code.

Each output port should be assigned an expression. The
value of the expression will be connected to that port.

Handel-C interface specifications.

These specify hardware details of the interface, such as
chip pin numbers or are used to specify an external

in the interface.
ividual ports.

he
 definitions

y
gned and unsigned types may be passed over interfaces.

of

Example

nt 4 inPort2)
interfaceName (unsigned outPort = x)

This example shows an interface declaration used to connect to a piece of foreign code,
and the definition that uses this declaration.

shou
are

po
Handel

InstanceName User-defined identifier for that instan
(You can define any number of instanc

por

GeneralSpecs

simulator using the extlib directive.

Interface specifications apply to all ports
You can also assign specifications to ind

Port definitions

If the interface has been previously declared, the port definitions must be prototyped in
their interface declaration, and must have the same types as those in the prototype. T
declaration must have at least one port into Handel-C or from Handel-C. Port
are delimited by commas. Each port definition consists of:

• the data type that uses it (either defined or inferred from its first use). Onl
si

• a port name

• port specifications (optional). The port specifications are enclosed in a set
braces {...} and delimited by commas.

interface Sort_A (int 4 inPort1, i

4.6.3 Example interface to external code

Handel-C Language Reference Manual

www.celoxica.com Page 59

set clock =
set family = XilinxVirtex;
set part = "V1000BG560-4";

erface
e tt signed 1 rbon)
gne 4 digit,

 unsigned 1 bin);

ed 1 bi
ed 4 di

e

ace ttl
code(un

 unsigned 4 digit=digitVal, unsigned 1 bin=binVal)
with

This declares an interface of sort tt17446. The inputs from the interf ndel-C
 segments box
7746 bi

ce of specifies the dat g into the
ports ltn, rbin, digit, and bin and connects to a plugin, PluginModelSim.dll, for

n.

not w on ted to define
stanc to re the

 as that shown above.)

4.6.4 Interf

Predefined bu

data list the pins used for transferring data, MSB to LSB

external "D17";

// Int declaration
interfac l7446(unsigned 7 segments, un
 (unsi d 1 ltn, unsigned 1 rbin, unsigned

unsigned 1 ltnVal;
unsigned 1 rbinVal;
unsign nVal;
unsign gitVal;

// Interfac definition
interf 7446(unsigned 7 segments, unsigned 1 rbon)
 de signed 1 ltn=ltnVal, unsigned 1 rbin=rbinVal,

 {extlib="PluginModelSim.dll",
 extinst="decode; model=ttl7446_wrapper; delay=1"};

ace to the Ha
design are
named tt1

 and rbon. The interface would therefore connect to a black
 with ports segments, rbon, ltn, rbin, digit, and n.

The instan the interface is decode. The instance a goin

simulatio

If you did
a single in

ant to use forward references to the interface, and
e of the interface sort tt17446, you would not need
nterface definition would be exactly the same

ly wan
 decla

interface. (The i

ace specifications

s interface specs: Default:

None

Handel-C Language Reference Manual

www.celoxica.com Page 60

speed s

s s

nfile set file source for input bus data None

set file destination for output bus data None

 debugger 10

bind component to work library 0

format of exported wires in EDIF netlist "B_I"

data list the pins used for transferring data, MSB to LSB None

for this port PlugInSet or
PlugInGet

ection to external code None

intime

outtime maximum allowable time between a port and the
sequential elements it is driven from (in ns)

None

properties parameterize instantiations of external black boxes None

e of port in port_in, port_out or bool for 1 bit

specify I/O standard (electrical characteristics) to LVCMOS33 for
Actel

LVTTL for
others

strength specify drive strength (in mA) for output buses Standard
dependent

et buffer speed (output) 2: Actel
ProASIC/
ProASIC+
1: others

pull et pull-up or pull-down for bus pin None

i

outfile

All interface specs: Default:

base specify display base for variables in

bind

busformat text

dci apply Digital Controlled Impedance to buses (Xilinx
only)

0 (No)

extlib specify external plugin for simulator None

extfunc specify external simulator function

extpath specify any direct logic (combinational logic)
connections to another port

None

extinst specify conn

maximum allowable time between a port and the
sequential elements it drives (in ns)

None

sc_type specify typ
generic interface for SystemC ports, sc_uint

otherwise
standard

use on port(s) in question
ProASIC/ProAS
IC+,

Handel-C Language Reference Manual

www.celoxica.com Page 61

vhdl_type specify type of port in port_in, port_out or
generic interface in VHDL

std_logic for
1 bit ports,
unsigned
otherwise

disable some compiler warnings 1 (No)

 RAMs and ROMs

logic provided in the FPGA/PLD using the ram and

ram int 6 a[43];
23, 46, 69, 92 };

constructs a RAM consisting of 43 entries each of which is 6 bits wide and a
g of 4 entries each of which is 16 bits wide.

be declared as static or global. If you declare a static ROM in a macro
procedure, each call to the macro creates a separate version of the ROM. RAMs can be

atic).

holds one 4 bit

1];

warn

4.7

RAMs and ROMs may be built from the
rom keywords.

For example:

static rom int 16 b[4] = {

This example
inROM consist

ROMs must

declared as static, global or auto (i.e. non-st

All RAMs and ROMs must be declared as arrays, so to declare a RAM that
integer, you must declare it as an array with a dimension of 1.

ram int 4 ramname[

 RAMs and ROMs may only have one entry accessed in any clock cycle.

4.7.1 Initialization

You can only initialize ROMs or RAMs if they are static, or have global scope. For
example, a global ROM could be initialized as shown below:

rom int 16 b[4] = { 23, 46, 69, 92 } with {block = 1};

The ROM is initialized with the constants given in the following list in the same way as an
array would be initialized in C. In this example, the ROM entries are given the following
values:

Handel-C Language Reference Manual

www.celoxica.com Page 62

ROM e try Value

b[2]

4.7.2 Inferring size from use

RAMs and ROMs from their usage. Thus, it is not always necessary to explicitly declare
ibutes. For example:

nd ROMs

OMs are accessed in the same way as arrays. For example:

e eighth entry of the RAM to the value 4. Note that as in conventional C, the
 has an index of 0 and the last has an index of n-1 where n is

 entries in the memory.

s between RAMs and arrays

 in that an array is equivalent to declaring a number of variables.
 may be used exactly like an individual variable, with as many
ites to a different element in the array as required within a clock

r, are normally more efficient to implement in terms of hardware
han arrays, but they only allow one location to be accessed in any one clock

erefore, you should use an array when you wish to access the elements more

n

b[0] 23
b[1] 46

69
b[3] 92

The Handel-C compiler can also infer the widths, types and the number of entries in

these attr

ram int undefined a[123];
ram int 6 b[];
ram c[43];
ram d[];

4.7.3 Accessing RAMs a

RAMs and R

ram int 6 b[56];

b[7] = 4;

This sets th
first entry in the memory
the total number of

4.7.4 Difference

RAMs differ from arrays
Each entry in an array
reads, and as many wr
cycle. RAMs, howeve
resources t
cycle. Th
than once in parallel and you should use a RAM when you need efficiency.

Handel-C Language Reference Manual

www.celoxica.com Page 63

4.7.5 RAM and ROM support on different devices

Creating internal RAMs can only be done if the target device supports on-chip RAMs. Most
nt e C d g. Altera Flex 10K, APEX, APEXII,

x and cl and Virtex series devices).

ort ROMs. ProASIC and ProASIC+ devices support RAMs, but these
iti ed.

ensional memory arrays

e simple m al arrays of memory using the ram, rom and wom
e d ition c r by using the optional disambiguator <>.

re ints, structs, pointers and arrays.

ram <int 6> a[15][43];
][2][2] =

 {{5, 6},
 {7, 8}

 {{9, 10},

This ex and 4 * 2
ROMs, each con the
constants in the following list in the same way as a multidimensional array would be

devices curre
Mercury, Strati

ly target
Cy

d by Handel-
one, Xilinx Spartan

o so (e.
 series devices

No Actel families supp
may not be in aliz

4.7.6 Multidim

You can creat ulti-dimension
keywords. Th efin s can be made leare

Syntax

ram | rom | wom logicType entry_width
 Name[[const_expression]] {[[const_expression]]}
 [= {initialization}];

Possible logic types a

The last constant expression is the index for the RAM. The other indices give the number
of copies of that type of RAM.

Example

static rom <int 16> b[4
 {{{1, 2},
 {3, 4}
 },

 },

 {11, 12}
 },
 {{13, 14},
 {15, 16}
 }
 };

ample constructs 15 RAMs, each consisting of 43 entries of 6 bits wide
sisting of 2 entries of 16 bits wide. The ROM is initialized with

Handel-C Language Reference Manual

www.celoxica.com Page 64

initializ
the ROM e

ROM e r

b[0][0][0

b[0][1][0

b[1][0 0

b[1][1][0

b[2][0][0] 9 b[2][0][1] 10

b[3][1][1] 16

rd element

nal array, you can access separate elements of the arrays, so long as
M. For example:

 valid

][1]=x[2][0] is invalid

ion may require substantially

 mpram (multi-ported RAMs)

te multiple-ported RAMs (MPRAMs) by constructing something similar to an

t

The normal declaration of a MPRAM would be to create a dual-ported RAM by declaring
two ports of equal width:

• for Actel devices, one port must be read-only, and one write-only.

ed in C. The last index (that of the RAM entry) changes fastest. In this example,
ntries are given the following values:

nt y Value ROM entry Value

] 1 b[0][0][1] 2

] 3 b[0][1][1] 4

][] 5 b[1][0][1] 6

] 7 b[1][1][1] 8

b[2][1][0] 11 b[2][1][1] 12

b[3][0][0] 13 b[3][0][1] 14

b[3][1][0] 15
Because of their architecture, RAMs and ROMs are restricted to performing operations
sequentially. Only one element of a RAM or ROM may be addressed in any given clock
cycle and, as a result, familiar looking statements are often disallowed. For example:

ram <unsigned int 8> x[4];
x[1] = x[3] + 1;

This code is inadvisable because the assignment attempts to read from the thi
of x in the same cycle as it writes to the first element.

In a multi-dimensio
you are not accessing the same RA

x[2][1]=x[3][0] is

x[2

Note that arrays of variables do not have these restrict s but
more hardware to implement than RAMs depending on the target architecture.

4.8

You can crea
ANSI-C union. You must use the mpram keyword.

mprams can be used to connect two independent code blocks. The clock of the mpram por
is taken from the function in which it is used.

Handel-C Language Reference Manual

www.celoxica.com Page 65

• for Altera ApexII and Mercury devices, both ports can be bi-directional. For
Cyclone and Stratix devices this depends on the type of memory used. For
other Altera families, one port would be read-only and one write-only

• Altera Mercury devices can have up to four ports. You can have (one or two
rts) OR two read/write ports. Depending on

t, you can have up to four simultaneous
ory.

block
RAM, and for LUT RAM, one port would be read/write and one read-only.
Spartan and SpartanXL devices only have distributed (LUT) RAM.

n
et hardware.

You can apply clock specifications to the whole MPRAM, or to individual ports. MPRAM
ports will be asynchronous by default, if the
tratix memories are fully synchronous and do

nous read ports explicitly by using clock position specifications
elen), and asynchronous write ports by using write-enable

cifications (westart, welength or wegate). However, you cannot have an
ld violate Handel-C's

Syntax

mpram

ype RAM_Name[size]
ition/WriteEnableSpecs = value}];
ype RAM_Name[size]

Examples

RAM, with clock
ple dual-port RAM, with

different clock specifications applied to each port.

write ports AND one or two read po
how you have configured the por
accesses of the same block of mem

• for Virtex and SpartanII devices, both ports would be read/write for

You can use mpram ports of different widths for certain devices.

The mpram construct allows the declaration of any number of ports. Your only restrictio
is the targ

write ports will be synchronous and read
target hardware allows it. For example, S
not allow an asynchronous read port.

You can create synchro
(rclkpos and clkpuls
spe
asynchronous write port and a synchronous read port, since this wou
timing semantics.

MPRAM_name
{
 ram_Type variable_T
 [with {ClockPos
 ram_Type variable_T
 [with {ClockPosition/WriteEnableSpecs = value}];
};

In the example below, the first MPRAM is a bi-directional dual-port
specifications applied to the whole MPRAM. The second is a sim

Handel-C Language Reference Manual

www.celoxica.com Page 66

set clock = external_divide "C1" 4;

 wom unsigned 4 WritePort[4] with {wclkpos = {2}, clkpulselen = 1};
pulselen = 1};

The first member of the mpram can be initialized.

static mpram Fred

ents of Fred.ReadWrite will be initialized as zero (since Mary is static).
this case, since Fred.Read is the same size as Fred.ReadWrite, elements 0 – 3 of

2 Mapping of different width mpram ports

mpram ey will be mapped onto each other
u are using. If the ports used are of different

n.

Spartan-IIE and
ces. They are not available

th other Altera devices or Actel devices.

mpram
{
 ram unsigned 4 Port1[4];
 ram unsigned 4 Port2[4];
} TMax with {wclkpos = {2}, rclkpos = {2.5}, clkpulselen = 1};

mpram
{

 rom unsigned 4 ReadPort[4] with {rclkpos = {2.5}, clk
} SMax;

4.8.1 Initialization of mprams

{
 ram <unsigned 8> ReadWrite[256]; // Read/write port
 rom <unsigned 8> Read[256]; // Read only port
} Mary ={10,11,12,13};

This would have the same effect as

Mary.ReadWrite[0]=10;
Mary.ReadWrite[1]=11;
Mary.ReadWrite[2]=12;
Mary.ReadWrite[3]=13;

The other elem
In
Fred.Read would be initialized with the same values.

4.8.

If the ports of the are of different widths, th
according to the specifications of the chip yo
widths, the widths should have values of 2

Different width ports are available for Xilinx Virtex and Spartan-II,
Spartan-3 devices and Altera Apex II, Stratix and Cyclone devi
wi

Handel-C Language Reference Manual

www.celoxica.com Page 67

Xilinx bit mapping

To find the bits that an array element occupies in a Xilinx Virtex or Spartan RA
use the formula

M, you can

ram y Name[a] will have a start bit of (y * (a+1)) - 1 and an end bit of y * a.

g is little-endian. This means that the address points to the LSB.

 bits between the declarations of RAM are mapped directly across, so that bit 27 in
tion, even though

ions.

m Joan

 rom <unsigned 8> Read[256]; // Read only port

 will run from 400 to 403.

n.Read[100] will run from 800 to 807.

om 400 to 407.

 to Joan.Read[50][0:3].

t mapping

e bits that an array element occupies in an ApexII RAM, you can use the

m y Name[a] will have a start bit of (y * (a+1)) - 1 and an end bit of y * a.

to the LSB.

ss, so that bit 27 in
declaration will have the same value as bit 27 in another declaration, even though

 bits may be in different array elements in the different declarations.

 ram <unsigned 4> ReadWrite[256]; // Read/write port
 8> Read[256]; // Read only port

n from 400 to 403.

n.Read[100] will run from 800 to 807.

Joan.Read[50] will run from 400 to 407.

Joan.ReadWrite[100] is equivalent to Joan.Read[50][0:3].

RAM array

Xilinx mappin

The
one declaration will have the same value as bit 27 in another declara
the bits may be in different array elements in the different declarat

mpra
{
 ram <unsigned 4> ReadWrite[256]; // Read/write port

};

Joan.ReadWrite[100]

Joa

Joan.Read[50] will run fr

Joan.ReadWrite[100] is equivalent

ApexII bi

To find th
formula
RAM array ra

ApexII mapping is little-endian. This means that the address points

The bits between the declarations of RAM are mapped directly acro
one
the

mpram Joan
{

 rom <unsigned
};

Joan.ReadWrite[100] will ru

Joa

Handel-C Language Reference Manual

www.celoxica.com Page 68

4.8.3 mprams example

Using an mpram to communicate between two independent logic blocks:

File 1:

mpram Fred

// Read only port

 ; // Declare Joan as an mpram like Fred

d main(void)
{

ta;

void main(void)

d 8 data;
 data= Joan.Read[7];
}

{
 ram <unsigned 8> ReadWrite[256]; // Read/write port
 rom <unsigned 8> Read[256];
};

mpram Fred Joan

set clock = internal "F8M";

voi

 unsigned 8 da

 Joan.ReadWrite[7] = data;
}

File 2:

mpram Fred
{
 ram <unsigned 8> ReadWrite[256]; // Read/write port
 rom <unsigned 8> Read[256]; // Read only port
};

extern mpram Fred Joan;
set clock = external "P2";

{
 unsigne

Handel-C Language Reference Manual

www.celoxica.com Page 69

4.9 WOM (write-only memory)

ng the keyword wom. The only use of a write-
y memory would be to declare an element within a multi-ported RAM. Since woms only

i-port rams, it is illegal to declare one outside an mpram declaration.

e_Size WOM_Name[dimension] =
{specs}]

ample

mpram connect

8> Writeonly[256]; // Write only port

4.10 sema

with the sema keyword. For example:

es have no type or width associated with them. They cannot be assigned to or
can only access semaphores through the

semaphore) statement. trysema
 if the semaphore is currently taken. If it is not, it takes the semaphore and
. If it is taken, it returns zero. releasesema releases the semaphore. After

a semaphore, you should ensure that you release it cleanly once you
rea.

aphores may be included in structures. They cannot be passed to directly to
, over channels or interfaces. They may be passed to functions or channels by

nce.

You can declare a write-only memory usi
onl
exist inside mult

Syntax

wom variable_Type variabl
 initialize_Values [with

Ex

{
 wom <unsigned
 rom <unsigned 8> Read[256]; // Read only port
}

Handel-C provides semaphores for protecting critical areas of code. Semaphores are
declared

sema RAMguard;

Semaphor
have their value assigned to anything else. You
trysema(semaphore) expression and releasesema(
tests to see
returns one
you have taken
have left the critical a

Sem
functions
refere

Syntax

sema Name

Handel-C Language Reference Manual

www.celoxica.com Page 70

Example

inline void critRAMaccess(sema *RAMsema, ram int 8
 (*danger)[4], unsigned count)

nt 8 x;
 // wait till you've got the // RAM

ema(*RAMsema)==0) delay;
r)[count];

 releasesema(*RAMsema);

4.11 signal

 to it but only for that clock cycle.
The value is assigned at the start of the clock cycle and can be read back during the

itialization value. The
<> ions.

 data-width>] signal_Name;

int 15 a, b;

 b = sig;

nd read from in the same clock cycle, so b is assigned the value of a.

nly holds the value assigned to it for a single clock cycle, if it is read
m just before or just after it is assigned to, you get its initial value. For example:

{
 i

 while(trys
 x= (*dange

}

A signal is an object that takes on the value assigned

same clock cycle. At all other times the signal takes on its in
optional disambiguator can be used to clarify complex signal definit

If a signal is assigned to when you are debugging code, values shown in the Watch and
Variables windows are updated immediately, rather than at the end of the clock cycle
(step).

Signals represent wires in hardware.

Syntax

signal [<type

Example

signal <int> sig;

a = 7;
par
{
 sig = a;

}

sig is assigned to a

Since the signal o
fro

Handel-C Language Reference Manual

www.celoxica.com Page 71

int 15 a, b;
static signal <int> sig = 690;

Here, b is assigned the value of a through the signal, as before. Since there is a clock
690.

4.12 Storage class specifiers

Storage class specifiers define how variables are accessed.

static are used within functions to allocate storage. static gives the
ass, and extern specifies that the variable is defined

specifiers auto and register can be used
 have no effect.

nsion of a function is defined by the specifier inline.

rve storage, but allows you to declare new names for

auto

able. In Handel-C, all local variables default to auto.
ou cannot initialize an auto variable, but must assign it a value. The initialization status

of auto variables is undefined.

void m n
{
 auto 8 pig;

a = 7;
par
{
 sig = a;
 b = sig;
}
a = sig;

cycle before the last line, a is finally assigned the signal's initial value of

extern and
declared objects static storage cl
elsewhere. For compatibility with ANSI-C, the
but

The expa

The typedef specifier does not rese
ng types. existi

4.12.1

auto defines a local automatic vari
Y

Example

set clock = external "P1";

ai (void)

 pig = 15;
}

Handel-C Language Reference Manual

www.celoxica.com Page 72

4.12.2 extern (external variables)

extern declares a variable that is external to all functions; the variable may be accessed
 any function.

y function, and declared in
them. The declaration may be an explicit extern , or

variable has been defined outside a function

used in multiple source files, it is good practice to collect all the extern
larations in a header file, included at the top of each source file using the #include
derFileName directive.

s variables in C or C++ files.

by name from

External variables must be defined exactly once outside an
each function that wants to access
else be implicit from the context (if the
without static).

If the variable is
dec
hea

You may use extern "language" to acces

 You cannot access the same variable from different clock domains.

Example

{

n variable decl

ct

language u to declare that names used in Handel-C

 For ANSI-C f n "C"

extern int 16 global_fish;
int global_frog = 1234;

main()

 global_fish = global_frog;
 …
}

Syntax

exter aration;

4.13 extern language constru

The extern "
code have ANSI-C or C++ l

" construct allows yo
inkage.

• unctions, use exter

• For C++ functions, use extern "C++"

These functions can only be compiled for simulations targeting the simulator. They may
not be used in targeting devices.

Handel-C Language Reference Manual

www.celoxica.com Page 73

ext
For examp would take at least one clock cycle, even if the return
value is ignored, and a C function with a body that takes 0 clock cycles and a void return
type would not take any clock cycles.

() with C linkage.

ern "C++"

declares a variable, x, with C++ linkage.

ecl
io.h>

}

 to have C linkage.

when inside an
nguage" construct:

ern "C" and extern "C++" functions have the same timing as Handel-C functions.
le, a printf() function

Examples

extern "C" int printf(const char *format, ...);
declares printf

ext
{
 int 14 x;
}

extern "C"
{
 //remove Microsoft-specific extensions from the header file
 #define __cd
 #include <std

causes everything in stdio.h

Mapping of types to C/C++

Handel-C types will be mapped to C/C++ types in the following way
extern "la

Handel-C Language Reference Manual

www.celoxica.com Page 74

Handel-C type C/C++ type

char char

 int (only valid within an extern "language" construct)

t width Int<width> (C++ only)

uct struct

e rom[n] convertedType[n]

Others Generate an error

Mapping of types outside extern

Mapping of types outside the extern "language" construct is the same, except signed
and unsigned ints must have a specified width.

short short

long long

int

in

unsigned int width UInt<width> (C++ only)

str

type ram[n] convertedType[n]

typ

 When outside an extern "language" construct, an int without a specified
width will generate an error.

For example, the following Handel-C:

extern "C" int printf(const char *format, ...);
extern "C++"
{

 printf(const char *format, ...);

g y;

 int 14 x;
 long y;
}
char f(long y); //outside extern construct

will map to this C++:

int
Int<14> x;
lon
char f(long y);

Handel-C Language Reference Manual

www.celoxica.com Page 75

4.14 register

mpatibility with ANSI-C. register
defines a variable that has local scope. Its initial value is undefined.

Example

4.15

 called. The logic will be generated
es that the function is not accessed at the same time

 of the

register has been implemented for reasons of co

register int 16 fish;
fish = f(plop);

 inline functions

inline causes a function to be expanded where it is
every time it is invoked. This ensur
by parallel branches of code.

 If you have a local static variable in an inline function there is one copy
variable per function instantiation.

By default, functions are assumed to be shared (not inline).

Example

nt needle, int stitch)

{
r[needle] = knit(needle, 1);

Syntax

inline function_Declaration

inline int 4 knit(i
{
 needle = needle + stitch;
 return(needle);
}

int 4 jumper[100];
par(needle = 1; needle < 100; needle = needle+2)

 jumpe
}

Handel-C Language Reference Manual

www.celoxica.com Page 76

4.16 static

 static storage (its values are kept at all times). This ensures that
 of a variable is preserved across function calls. It also affects the scope of a
or a function. static functions and static variables declared outside functions can

 be used in the file in which they appear. static variables declared within an inline
s can only be used in the copy of the function in which

pear. Handel-C uses static in a different way to C++. In C++, if you have an
d a local static variable, one copy of the variable is shared across each

ction instantiation. In Handel-C, there is one copy of the variable per function

only local variables (excluding consts) that can be initialized. To

d main(void)

sh, pondweed;
fish = local_function(fresh, pondweed);

eclaration;

edef

edef r name for a variable type. This allows you to clarify your code.
onym for the variable type.

_FISH;

If the typedef is used in multiple source files, it is good practice to collect all the type
definitions in a header file, included at the top of each source file using the #include
headerFileName directive. It is conventional to differentiate typedef names from
standard variable names, so that they are easily recognizable.

static gives a variable
the value

iable var
only
function or an array of function
they ap
inline function an
fun
instantiation.

static variables are the
get a default value, initialize the variable.

Example

static int 16 local_function (int water, int weed);
static int 16 local_fish = 1234;

voi
{
 int fre
 local_
 ...
}

Syntax

static variable_d
static functionName(parameter-type-list);

Static variables in arrays of functions

If a static variable is declared in an arrayed function, each instance of the function will
have its own independent copy of the variable.

4.17 typ

typ defines anothe
The new name is a syn

typedef int 4 SMALL

Handel-C Language Reference Manual

www.celoxica.com Page 77

Example

typedef int 4 SMALL_FISH;

ckleback;

 typeof

or allows the type of an object to be determined at compile time.
The argument to typeof must be an expression. Using typeof ensures that related

e and width conflicts.

expression)

{
 typeof(ch) cha, chb;

typeof(s1) s2;

ha;

 would be no need to

This is also useful for passing parameters to macro procedures. The code below shows
how to use a typeof definition to deal with multiple parameter types.

}

extern SMALL_FISH sti

4.18

The typeof type operat

variables maintain their relationship. It makes it easy to modify code by simplifying the
process of sorting out typ

A typeof construct can be used anywhere a type name could be used. For example, you
can use it in a declaration, in casts.

Syntax

typeof (

Example

unsigned 9 ch;
typeof(ch @ ch) q;
struct

} s1;

ch = s1.cha + s2.chb;
q = s1.chb @ s2.c

If the width of variable ch were changed in this example, there
modify any other code.

macro proc swap (a, b)
{
 typeof(a) t;
 t=a;
 a=b;
 b=t;

Handel-C Language Reference Manual

www.celoxica.com Page 78

4.19 const

const defines a variable or pointer or an array of variables or pointers that cannot be
assigned to. This means that they keep the initialization value throughout. They may be

 const keyword can be used instead of
#define to declare constant values. It can also be used to define function parameters

ever modified. The compiler will perform type-checking on const variables
grammer from modifying it.

ample 1

// Error
+; // Error

const int *const p;

*p = 3; // Error

 is used to declare a variable that can be modified by something
rogram.

s mostly used for hard-wired registers. volatile controls optimization by forcing a re-
of the variable. It is only a guide, and may be ignored. The initial value of volatile

s undefined.

 nothing with volatile. It is accepted for compatibility purposes.

xtremely complex declarations in Handel-C. You can combine
ays of functions, structs, arrays, and pointers with architectural types. To clarify such

4.21.1 Macro expressions in widths

If you use a macro expression to provide the width in a type declaration, you must
enclose it in parentheses. This ensures that it will be correctly parsed as a macro.

initialized in the declaration statement. The

which are n
and prevent the pro

Ex

const int i = 5;

i = 10;
i+

Example 2

p = p + 1; // Error

4.20 volatile

In ANSI-C, volatile
other than the p

It i
read

ables ivari

Handel-C does

4.21 Complex declarations

It is possible to have e
arr
expressions, it is wise to use typedef.

Handel-C Language Reference Manual

www.celoxica.com Page 79

int (mac(x)) y;

To declare a pointer to a function returning that type, you get

mac(x)) (*f)();

 clarifier)

ension used to disambiguate complex declarations of architectural
es. You cannot use it on logic types. It is good practice to use it whenever you declare

nels, memories or signals, to clarify the format of data passed or stored in these

 as:

 //channel of pointers?

 of pointers

als to split up complex expressions

gnals to split up complex expressions. E.g.,

) - 55) << 2) + 100;

ld also be written

int (

4.21.2 <> (type

< > is a Handel-C ext
typ
chan
variables.

It is required to disambiguate a declaration such

chan int *x; //pointer to channel or

This should be declared as

chan <int *> x; //channel
or

chan <int> *x; //pointer to channel

Example

struct fishtank
{
 int 4 koi;
 int 8 carp;
 int 2 guppy;
} bowl;

signal <struct fishtank> drip;
chan <int 8 (*runwater)()> tap;

4.21.3 Using sign

You can use si

b = (((a * 2

cou

Handel-C Language Reference Manual

www.celoxica.com Page 80

int 17 a, b;
signal s1, s2, s3, s4;

par
{
 s1 = a;
 s2 = s1 * 2;
 s3 = s2 - 55;
 s4 = s3 << 2;
 b = s4 + 100;
}

Breaking up expressions also enables you to re-use sub-expressions:

unsigned 15 a, b;
signal sig1;

par
{
 sig1 = x + 2;
 a = sig1 * 3;
 b = sig1 / 2;
}

4.22 Variable initialization

Global, static and const variables

Global variables (i.e. those declared outside all code blocks) may be initialized with their
declaration. For example:

static int 15 x = 1234;

static int 7 y = 45 with {outfile = "out.dat"};

Variables declared within functions or macros can only be initialized if they have static
storage or are consts.

Global and static variables may only be initialized with constants. If you do not initialize
them, they will have a default value of zero.

If you use the set reset construct, variables will be reset to their initial values. If you
use the try...reset construct, variables will not be re-initialized.

Handel-C Language Reference Manual

www.celoxica.com Page 81

All other variables

Local non-static variables have no default initial value. You cannot initialize them.
Instead, you must use an explicit sequential or parallel list of assignments following your

{

 y = 4;

 variables (including static variables inside functions) are initialized before
 run begins (i.e. before the first clock cycle is simulated).

declarations to achieve the same effect. For example:

 int 4 x;
 unsigned 5 y;

 x = 5;

}

Simulation

In simulation,
the simulation

Handel-C Language Reference Manual

www.celoxica.com Page 82

5

 Sequential and parallel execution

icitly executes instructions sequentially. When targeting hardware it is
extremely important to use parallelism. For this reason, Handel-C has a parallel

ecute in parallel and in the same clock cycle:

1;
2;

}

ee assignments that execute sequentially, requiring three clock cycles:

par example executes all assignments literally in parallel. Three specific pieces of
hardware are built to perform these three assignments. This is about the same amount

ially.

hes

;

Statements

5.1

Handel-C impl

composition keyword par to allow statements in a block to be executed in parallel.

Three assignments that ex

par
{
 x =
 y =
 z = 3;

Thr

x = 1;
y = 2;
z = 3;

The

as is needed to execute the assignments sequent

Sequential branc

Within parallel blocks of code, sequential branches can be added by using a code block
denoted with the {...} brackets instead of a single statement. For example:

par
{
 x = 1
 {
 y = 2;
 z = 3;
 }

}

In this example, the first branch of the parallel statement executes the assignment to x
while the second branch sequentially executes the assignments to y and z. The
assignments to x and y occur in the same clock cycle, the assignment to z occurs in the
next clock cycle.

Handel-C Language Reference Manual

www.celoxica.com Page 83

 The instruction following the par {...} will not be executed until all branches
of the parallel block complete.

5.2 seq

 replication, the seq keyword exists. Sequential statements can be written with
rd.

le executes three assignments sequentially:

 1;
y = 2;

 z = 3;

and seq

licate par and seq blocks by using a counted loop (a similar construct to a
ned with a start point (index_Base below), an end point

dex_Limit) and a step size (index_Count). The body of the loop is replicated as

ax

 | seq (index_Base; index_Limit; index_Count)

variables used in index_Base, index_Limit and index_Count are macro
 are implicitly declared. index_Base, index_Limit and index_Count do not

ssions, for example, you could declare par (i=0, j=23; i !=
his case i and j are implicit macro exprs

To allow
or without the keywo

The following examp

x =

z = 3;

as does this:

seq
{
 x = 1;
 y = 2;

}

5.3 Replicated par
You can rep
for loop). The count is defi
(in
many times as there are steps between the start and end points. If it is a par loop, the
replicated processes will run in parallel, if a seq, they will run sequentially.

Synt

par
{
 Body
}

The appare
exprs that

nt

need to be single expre
76; i++, j--). In t

Handel-C Language Reference Manual

www.celoxica.com Page 84

Example

i++)
 {

expands to:

[1];

 example

 else ifselect(r == 15)

}

checks for the start of the pipeline, the replicator rules create the middle

 q[2] = q[1];

 out = q[14];
}

par (i=0; i<3;

 a[i] = b[i];
 }

par
{
 a[0] = b[0];
 a[1] = b
 a[2] = b[2];
}

Replicated pipeline

unsigned init;
unsigned q[149];
unsigned 31 out;

init = 57;
par (r = 0; r < 16; r++)
{
 ifselect(r == 0)
 q[r] = init;

 out = q[r-1];
 else
 q[r] = q[r-1];

ifselect
sections and ifselect checks the end. The replicated code expands to:

par
{
 q[0] = init;
 q[1] = q[0];

 etc...

 q[14] = q[13];

Handel-C Language Reference Manual

www.celoxica.com Page 85

5.4 prialt

The prialt statement selects the first channel ready to communicate from a list of
channel cases. The syntax is similar to a conventional C switch statement.

prialt
{

break;

 break;

t

 selects between the communications on several channels depending on the
diness of the other end of the channel. CommsStatement must be one of the following:

 ? Variable

 statement is the first to be ready to transfer data will
ferred over the channel. The statements up to the next

en be executed. If no channel is ready within a given clock tick,
default clause will be executed (if one is present)

ty

wo channels are ready simultaneously, then the first one listed in the code takes

fault

prialt statement with default case:
if none of the channels is ready to communicate immediately then the default branch
statements executes and the prialt statement terminates.

 case CommsStatement:
 Statement

 case CommsStatement:
 Statement

 [default:
 Statemen
 break;]
}

prialt
rea

Channel

Channel ! Expression

The case whose communication
execute and data will be trans
break statement will th
the

Priori

If t
priority.

De

prialt with no default case:
execution halts until one of the channels becomes ready to communicate.

Handel-C Language Reference Manual

www.celoxica.com Page 86

Restrictions

Fall through of cases in a prialt construct is prohibited. This means that each case
st have its own break statement. If the same channel is listed twice in its cases, only

t occurrence will ever be accessed. You would only wish to do this if the channel
n the prialt is the result of an expression (e.g., a pointer to a channel or a

hannels). The compiler cannot reliably check this condition, so it
g.

l between clock domains has fifolength=0 (default) and has a prialt on
r will convert it to have a fifolength=1. This is also true if a

el within a prialt has the other side within a try reset in a different clock

examples

the first channel ready to communicate from a list of

, y, z;
 <int 4> first, second;

par

 {
case first ! x:

 break;
d ! y:

k;

 receive statements can be mixed within a prialt. For example:

mu
the firs
withi
reference to an array of c
will not cause a warnin

If a channe
both sides, the compile
chann
domain.

5.5 Using prialt:

The prialt statement selects
channel cases.

int 4 x
chan

{
 prialt

 case secon
 brea
}

seq
{
 delay;
 second ? z;
}

Send and

Handel-C Language Reference Manual

www.celoxica.com Page 87

int 4 num, even, odd;
chan <int 4> ch1, ch2;

par
{
 if (num[0] != 0)

ch1 ? odd;

 ch2 ! num;

 ch2 ? even:
break;

chan <int 4> ch;

prialt
{
 case ch ! x:
 break;
 case ch ! y: //illegal: ch already used
 break;
}

int 4 x, y;
chan <int 4> ch;

prialt
{
 case ch ! x:
 break;
 case ch ? y: //illegal: ch already used
 break;
}

 else

 prialt
 {
 case ch1 ! num:
 break;
 case

 }
}

Restrictions on using prialt

int 4 x, y;

Handel-C Language Reference Manual

www.celoxica.com Page 88

5.6 Assignments

Handel-C assignm

p

 o e width and type (signed or
he variable on the left hand side. The compiler generates an error if this is

ide of the assignment may be any variable, array element or RAM
rig ion.

hort cut assignment statements cannot be used in expressions as they can
C Introduction: Expressions for

ion.

t ravene the RAM access

ents are of the form:

Variable = Ex ression;

For example:

x = 3;
y = a + b;

The expression
unsigned) as t

n the right hand side must be of the sam

not the case.

The left hand s
element. The ht hand side of the assignment may be any express

Short cuts

The following s
in conventional
more informat

 but only in stand-alone statements. See

Shortcuts canno
restrictions

 be used with RAM variables, as they cont

Handel-C Language Reference Manual

www.celoxica.com Page 89

Statement Expansion

Variable ++; Variable = Variable + 1;

iable = Variable - 1;

ble = Variable + 1;

ble = Variable - 1;

ression;
riable = Variable + Expression;

Var
Expression;

Variable *=
;

Variable = Variable * Expression;

Variable = Variable / Expression;

Expression;
Variable = Variable >> Expression;

=
n;

Variable = Variable & Expression;

iable |= Variable = Variable | Expression;

e ^= Variable = Variable ^ Expression;

.1 continue

e next iteration of a for, while or do loop. For do or while,
cuted immediately. In a for statement, the increment step

is executed. This allows you to avoid deeply nested if ... else statements within
loop

Variable --; Var

++ Variable; Varia

-- Variable; Varia

Variable += Va
Exp

iable -= Variable = Variable – Expression;

Expression

Variable /=
Expression;

Variable %=
Expression;

Variable = Variable % Expression;

Variable <<=
Expression;

Variable = Variable << Expression;

Variable >>=

Variable &
Expressio

Var
Expression;

Variabl
Expression;

5.6

continue moves straight to th
this means that the test is exe

s.

Handel-C Language Reference Manual

www.celoxica.com Page 90

Example

for (i = 100; i > 0; i--)
{

 i);

 continue;

e to jump out of or into par blocks.

 x = f(
 if (x == 1)

 y += x * x;
}

 You cannot use continu

5.6.2

goto label moves straight to the statement specified by label. label has the same
format as a variable name, and must be in the same function as the goto. Labels are
local to the whole function, even if placed within an inner block. Formally, goto is never

om deeply nested levels of code in

oto Error;

 output ! error_code;

 You cannot use goto to jump out of or into par blocks.

 goto

necessary. It may be useful for extracting yourself fr
case of error.

Example

for(…)
{
 for(…)
 {
 if(disaster)
 g
 }
}

Error:

Handel-C Language Reference Manual

www.celoxica.com Page 91

5.6.3 return [expression]

tatement is used to return from a function to its caller. return terminates
nd returns control to the calling function. Execution resumes at the line
ollowing the function call. return can return a value to the calling function.

 value returned is of the type declared in the function declaration. Functions that do
urn a value should be declared to be of type void.

t base, int n)

p = p * base;
);

You cannot use return to jump out of par blocks.

The return s
the function a

ediately fimm
The
not ret

Example

int power(in
{
 int i, p;

 p = 1;
 for (i = 1; i <= n; ++i)

 return(p
}

5.6.4 Conditional execution (if ... else)

l-C provides the standard C conditional execution construct as follows:

if (Expression)

else

e else portion may be omitted if not required. For example:

ock in {...}
brackets. For example:

Hande

 Statement

 Statement

As in conventional C, th

if (x == 1)
 x = x + 1;

Statement may be replaced with a block of statements by enclosing the bl

Handel-C Language Reference Manual

www.celoxica.com Page 92

if (x>y)

 a = b;

e

 c = b;

and the second
es as false and

zero values as true. Relational and logical operators return values to match this
also possible to use variables as conditions. For example:

 is expanded by the compiler to:

(x!=0)

When executed, if x is not equal to 0 then b is assigned to a. If x is 0 then d is assigned

s while loops exactly as in conventional C:

le loop may be executed zero or more times depending on the
Expression is true then Statement is executed repeatedly.

d with a block of statements. For example:

{

 c = d;
}
els
{
 a = d;

}

The first branch of the conditional is executed if the expression is true
branch is executed if the expression is false. Handel-C treats zero valu
non-
meaning but it is

if (x)
 a = b;
else
 c = d;

This

if
 a = b;
else
 c = d;

to c.

5.6.5 while loops

Handel-C provide

while (Expression)
 Statement

The contents of the whi
value of Expression. While
Statement may be replace

Handel-C Language Reference Manual

www.celoxica.com Page 93

x = 0;
 45)

 y + 5;

e adds 5 to y 45 times (equivalent to adding 225 to y).

nal
e end of the loop rather than at the beginning as is the case

ment may be replaced with a block of statements. For example:

b;
 x = x - 1;

 conventional C.

)
 Statement

r loop may be executed zero or more times according to the results of
 condition test. There is a direct correspondence between for loops and while loops.

 a

irectly equivalent to:

while (x !=
{
 y =
 x = x + 1;
}

This cod

5.6.6 do ... while loops

Handel-C provides do ... while loops exactly as in conventional C:

do
 Statement
while (Expression);

The contents of the do ... while loop is executed at least once because the conditio
expression is evaluated at th
with while loops. State

do
{
 a = a +

} while (x>y);

5.6.7 for loops

Handel-C provides for loops similar to those in

for (Initialization ; Test ; Iteration

The body of the fo
the
Because of the benefits of parallelism, it is nearly always preferable to implement
while loop instead.

for (Init; Test; Inc)
 Body;

is d

Handel-C Language Reference Manual

www.celoxica.com Page 94

{
 Init;

 Body;

y includes a continue statement. In a for loop continue jumps to before
n a while loop continue jumps to after the increment.

inue statement is needed, it is always faster to implement the for
op with the Body and Inc steps in parallel rather than in sequence

en this is possible.

ucts, Statement may be replaced with a block of

 between a conventional C for loop and the Handel-C version is in the
nd iteration phases. In conventional C, these two fields contain

ressions and by using expression side effects (such as ++ and --) and the sequential
conventional C allows complex operations to be performed. Since Handel-C

 side effects in expressions the initialization and iteration expressions have
ed with statements. For example:

x < 20; x = x+1)

 y = y + 2;

ignment of 0 to x and adding one to x are both statements and not
 and iteration statements can be replaced with blocks of

tements by enclosing the block in {...} brackets. For example:

}

 while (Test)
 {

 Inc;
 }
}

unless the Bod
the increment, i

Unless a specific cont
loop as a while lo
wh

Each of the initialization, test and iteration statements is optional and may be omitted if
not required. Note that for loops with no iteration step can cause combinational loops.
As with all other Handel-C constr
statements. For example:

for (; x>y ; x++)
{
 a = b;
 c = d;
}

The difference
initialization a
exp
operator ','
does not allow
been replac

for (x = 0;
{

}

Here, the ass
expressions. These initialization
sta

for ({ x=0; y=23;} ; x < 20; {x+=1; x*=2;})
{

y = y + 2;

Handel-C Language Reference Manual

www.celoxica.com Page 95

5.6.8 switch

switch statements similar to those in conventional C.

{
 case
 Statement

ult:

 switch expression is evaluated and checked against each of the case compile time
ent(s) guarded by the matching constant is executed until a break

ntered.

found, the default statement is executed. If no default option is
vided, no statements are executed.

may be replaced with a block of statements by
 the block in {...} brackets.

 e = f;

}

x is 10, b is assigned to a and d is assigned to c, if x is 11, d is assigned to c and

 The values following each case branch must be compile time constants.

Handel-C provides

switch (Expression)

Constant:

 break;

 defa
 Statement
 break;
}

The
constants. The statem
statement is encou

If no matches are
pro

Each of the Statement lines above
enclosing

As with conventional C, it is possible to make execution drop through case branches by
omitting a break statement. For example:

switch (x)
{
case 10:
 a = b;
case 11:
 c = d;
 break;

case 12:

 break;

Here, if
if x is 12, f is assigned to e.

Handel-C Language Reference Manual

www.celoxica.com Page 96

5.6.9 break

es the normal C break statement for:

ing loops

n of case branches in switch and prialt statements.

sed to jump into or out of par blocks.

When used within a while, do...while or for loop, the loop is terminated and execution
wing the loop. For example:

for (x=0; x<32; x++)

ase 2:
 y++;

 case 3:

 break;

Execution continues here

Handel-C provid

• terminat

atio• separ

break cannot be u

Loops

continues from the statement follo

{
 if (a[x]==0)
 break;
 b[x]=a[x];
}
// Execution continues here

switch

When used within a switch statement, execution of the case branch terminates and the
statement following the switch is executed. For example:

switch (x)
{
 case 1:
 c

 break;

 z++;

}
//

prialt

When used within a prialt statement, execution of the case branch terminates and the
statement following the prialt is executed. For example:

Handel-C Language Reference Manual

www.celoxica.com Page 97

prialt
{
 case a ? x:

reak;
 b ! y:

 break;

ution continues here

 delay

cle) or to adjust
execution timing.

delay can also be used to break combinational logic cycles.

5.6.11 try... reset

try...reset allows you to perform actions on receipt of a reset signal within a specified
section of code. You can form the same kind of construct with other control statements,
but this requires more complex code and therefore more hardware.

Syntax

try
{
 statements
}
reset(condition)
{
 statements
}

During the execution of statements within the try block, if condition is true, the reset
statement block will be executed immediately, else it will not. The condition expression is
continually checked. If it occurs in the middle of a function, execution will immediately go
to the reset thread. Static variables within the function will remain in the state they were
in when the reset condition occurred. Variables and RAMs will not be re-initialized.

 x++;
 b
 case
 y++;

}
// Exec

5.6.10

Handel-C provides a delay statement, not found in conventional C, which does nothing
but takes one clock cycle to do it. This may be useful to avoid resource conflicts (for
example to prevent two accesses to one RAM in a single clock cy

Handel-C Language Reference Manual

www.celoxica.com Page 98

Examples

void main(void)
{
 interface bus_in(int 1 input) resetbus();

 try

someFunction();

t(resetbus.input == 1)
 {

eanUpSomeFunction();

t statements, and more than one try condition is true, only
nt is executed. For example:

 {

 }
 rese

 cl
 }
}

If you have nested try…rese
the outermost reset stateme

Handel-C Language Reference Manual

www.celoxica.com Page 99

unsigned 4 a, s, t, x, y;

== 1);

 try

 try
 {

 a = 1;
 a = 2;

 reset(condition)

 t = 1;
}

 }

 1;

will execute the second reset statement only.

trysema(semaphore) tests to see if the semaphore is owned. If not, it returns one and
takes ownership of the semaphore. If it is, it returns zero. A semaphore may be freed by
using the statement releasesema(semaphore).

static unsigned 1 condition = 0;

par
{
 while(1)
 {
 condition = (a
 }

 {

 a = 3;
 }

 {
 s = 1;

 reset (condition)
 {
 x =
 y = 1;
 }
}

5.6.12 trysema()

Handel-C Language Reference Manual

www.celoxica.com Page 100

Example

inline void critRAMaccess(sema *RAMsema, ram int 8
 (*danger)[4], unsigned count)

)==0) delay;

 releasesema(*RAMsema);

 Note that you can no longer take the semaphore twice without releasing it.

{
 int 8 x;
 // wait till you've got the RAM
 while(trysema(*RAMsema
 x= (*danger)[count];

}

while(1)
{
 // always succeeds because its the same 'trysema' expression
 if (trysema(s)) {...}
}

In DK version 1, this worked. In DK version 1.1 and subsequent versions, the second and
subsequent trysema() will always fail. Instead, use

while(1)
{
 if (trysema(s))
 {
 ...
 releasesema(s)
 }
}

5.6.13 releasesema()

releasesema(semaphore) releases a semaphore that was previously taken by
trysema(semaphore).

Handel-C Language Reference Manual

www.celoxica.com Page 101

Example

inline void critRAMaccess(sema *RAMsema, ram int 8
 (*danger)[4], unsigned count)

 while(trysema(*RAMsema)==0) delay; // wait till you've got the RAM

{
 int 8 x;

 x= (*danger)[count];
 releasesema(*RAMsema);
}

Handel-C Language Reference Manual

www.celoxica.com Page 102

6 E xpressions

6.1 Introduction to expressions

 cycles required

 Handel-C take no clock cycles to be evaluated, and so have no bearing on
ven program takes to execute.

m: the more complex an
 and the longer it is likely to

take because of combinational delays in the hardware. The clock period for the entire

 ++ operator has the side effect of assigning b+1 to b

ons

any side effects can be written in
nd assignments. The resulting code is

 1;

6.1.3 Prefix and postfix operators

 than
expressions. For example:

6.1.1 Clock

Expressions in
the number of clock cycles a gi

They affect the maximum possible clock rate for a progra
expression, the more hardware is involved in its evaluation

hardware program is limited by the longest such evaluation in the whole program.

Because expressions are not allowed to take any clock cycles, expressions with side
effects are not permitted in Handel-C. For example;

if (a<b++) /* NOT PERMITTED */

This is not permitted because the
which requires one clock cycle.

6.1.2 Breaking down complex expressi

The longest and most complex C statement with m
terms of a larger number of simpler expressions a
normally easier to read. For example:

a = (b++) + (((c-- ? d++ : e--)) , f);

can be rewritten as:

a = b + f;
b = b + 1;
if (c)
 d = d + 1;
else
 e = e -
c = c - 1;

Handel-C provides the prefix and postfix ++ and -- operations as statements rather

Handel-C Language Reference Manual

www.celoxica.com Page 103

a++;
b--;
++c;

b = b - 1;

d = d - 1;

f expression types

tomatic conversions between signed and unsigned values are not allowed. Values must
 the programmer is aware that a conversion is

ndefined width. For example:

infer that y must be 4 bits wide.

 of signed/unsigned casting

ollowing piece of Handel-C is invalid:

 // Range of x: -8...7
e of y: 0...15

to be

 difference, consider the case when y is 10. By simply assigning these 4 bits
ution might be to

ve the value of 10.

--d;

is directly equivalent to:

a = a + 1;

c = c + 1;

6.2 Casting o

Au
be cast between types to ensure that
occurring that may alter the meaning of a value.

You can cast to a type of u

int 4 x;
unsigned int undefined y;

x = (int undefined)y;

The compiler will

Explanation

The f

int 4 x;
unsigned int 4 y; // Rang

x = y; // Not allowed

This is because x is a signed integer while y is an unsigned integer. When generating
hardware, it is not clear what the compiler should do here. It could simply assign the 4
bits of y to the 4 bits of x or it could extend y with an extra zero as its most significant
bit to preserve its value and then assign these 5 bits to x assuming x was declared
5 bits wide.

To see the
to a signed integer, a result of -6 would be placed in x. A better sol
extend y to a five bit value by adding a 0 bit as its MSB to preser

A programmer must explicitly cast the variables to the same type. Assuming that they
wish to use the 4-bit value as a signed integer, the above example then becomes:

Handel-C Language Reference Manual

www.celoxica.com Page 104

int 4 x;
unsigned int 4 y;

x = (int 4)y;

It is now clear that the value of x is the result of treating the 4 bits extracted from y as a
signed integer.

6.2.1 Restrictions on casting

Casting cannot be used to change the width of values. For example, this is not allowed:

unsigned int 7 x;

y = (int 12)(0 @ x);

Here, the concatenation operation produces a 12-bit unsigned value. The casting then
 integer for assignment to y.

 that the programmer is aware of such conversions.

o routes. One would be to sign extend the value of x
econd would be to zero pad the value of x and

 can preserve the value of x in y Handel-
C performs neither automatically. Rather, it is left up to the programmer to decide which

icular situation and to write the expression accordingly. You
se

Developer's Kit.

6.3 Re s on RAMs and ROMs

Because of their architecture, RAMs and ROMs are restricted to performing operations
sequentially. Only one element of a RAM or ROM may be addressed in a single clock

int 12 y;

y = (int 12)x; // Not allowed

The conversion should be done explicitly:

changes this to a 12-bit signed

This is to ensure

Explanation

int 7 x;
unsigned int 12 y;

x = -5;
y = (unsigned int 12)x;

The Handel-C compiler could take tw
and produce the result 4091. The s
produce the value of 123. Since neither method

approach is correct in a part
may sign extend using the adjs macro and zero-pad using the adju macro. The
macros are provided in the standard macro library within the Celoxica Platform

striction

Handel-C Language Reference Manual

www.celoxica.com Page 105

cycle. In hardware,
memory, allowing o

 this means you can only write one value to the address port of a
ne read access or one write access. You can detect simultaneous

neous

 port at a time, but you can only make a

d assignment

ROM may be addressed in any given clock cycle and, as a
 often produce unexpected results. For example:

 + 1;

Example of disallowed condition evaluation

ram unsigned int 8 x[4];

is illegal because the condition evaluation must read from element 0 of the
restrictions

do ... while loops, for loops and switch statements.

e RAM so the problem does not occur.

require

memory accesses when you are debugging your code by using the Detection of simulta
memory accesses option on the Debug tab in Project Settings, or the -S+parmem option in the
command line compiler.

If you want to make more than one access to a memory at a time, use an MPRAM (multi-
ported RAM). You can access more than one
single access to any one mpram port in a single clock cycle.

Example of disallowe

Only one element of a RAM or
result, familiar looking statements will

ram <unsigned int 8> x[4];
x[1] = x[3]

This code should not be used because the assignment attempts to read from the third
element of x in the same cycle as it writes to the first element, and the memory may
produce undefined results.

if (x[0]==0)
 x[1] = 1; //double access, disallowed

This code
RAM in the same clock cycle as the assignment writes to element 1. Similar
apply to while loops,

Incorrect execution with conditional operator

This code will not execute correctly because of the double access.

x = y>z ? RamA[1] : RamA[2];

The solution is to re-write the code as follows:

x = RamA[y>z ? 1 : 2];

Here, there is only a single access to th

 les do not haveArrays of variab these restrictions but may
substantially more har depending on the dware to implement than RAMs (
target architecture).

Handel-C Language Reference Manual

www.celoxica.com Page 106

6.

assert allows you to generate messages at compile-time if a condition is met. The
messages can be used to check compile-time constants and help guard against possible
problematic code alterations. The user uses an expression to check the value of a

pression evaluates to false, an error message is sent

column - end column::Assertion failed: user-

 default error message is:

he expression evaluates to true, the whole assert expression is replaced by a constant
ression.

as a statement by passing 0 as the trueValue. If the condition is
e, the whole assert statement is replaced by 0 (a null statement). This is shown in the

If the width of x is 3 (the condition is true), the whole statement is
rueValue of 0, so nothing happens.

ert (width(x)==3, 0, "Width of x is not 3 (it is %d)", width(x));

,

pecification(s)
{,argument(s)}]);

If condition is true, the whole expression reduces to trueValue. If condition is false,
string will be sent to the standard error channel, with each format specification
replaced by an argument. When assert encounters the first format specification (if any),
it converts the value of the first argument into that format and outputs it. The second
argument is formatted according to the second format specification and so on. If there
are more expressions than format specifications, the extra expressions are ignored. The
results are undefined if there are not enough arguments for all the format specifications.

The format specification is one of:

%c Display as a character %s Display as a string

%d Display as a decimal %f Display as a floating-point

%o Display as an octal %x Display as a hexadecimal

4 assert

compile-time constant, and if the ex
to the standard error channel in the format

filename:line number, start
stringdefined error

The

"Error : User assertion failed"

If t
exp

assert can be used
tru
example below.
replaced by the t

ass

A more detailed example is given below. assert can also be used as an expression
where its return value is assigned to something. This is illustrated in the second example
below, where the return value is assigned to ReturnVal.

Syntax

assert(condition,trueValue [string with format s

Handel-C Language Reference Manual

www.celoxica.com Page 107

 An assert evaluates to an empty statement and can only appear after all
declarations in a macro or function

Using assert as a statement

In the example below assert is used as a statement.

f(int x)

, 0, "Width of x is not 3 (it is %d)", width(x));

 of 4, so the following message will be displayed.

proj\test.hcc(4)(2) : Assertion failed : Width of x is not 3 (it is 4)

set clock = external "C1";
int
{
 assert(width(x)==3
 return x+1;
}

void main(void)
{
 int 4 y;
 y = f(y);
}

x will be inferred to have a width

F:\

Using assert as an expression

In the example below, assert is used as an expression.

Handel-C Language Reference Manual

www.celoxica.com Page 108

set clock = external "C1";
unsigned func(unsigned p, unsigned q)

acro expr CheckWidths(a, b) = assert((WidthSum(a, b)==32

 ReturnVal = CheckWidths(p, q);

turn ReturnVal;

 static unsigned 7 y;

ulation operators

pulation operators are provided in Handel-C:

Shift left

Shift right

Take least significant bits

@ Concatenate bits

[] Bit selection

ion

{
 macro expr WidthSum(a, b) = width(a) + width(b);
 m
 || WidthSum(a, b)==16), WidthSum(a, b),
 "Sum of widths of function parameters is not 16 or 32 (it is %d)",
 WidthSum(a, b));
 unsigned 16 ReturnVal;

 re
}

void main(void)
{
 static unsigned 9 x;

 unsigned result;

 result = func(x, y);
}

6.5 Bit manip

The following bit mani

<<

>>

<-

\\ Drop least significant bits

width(Expression) Width of express

Handel-C Language Reference Manual

www.celoxica.com Page 109

6.5.1 Shift operators

ift a value left or right by a variable number of bits resulting in a
e of the same width as the value being shifted. Any bits shifted outside this width are

ng unsigned values, the right shift pads the upper bits with zeros. When right
 values, the upper bits are copies of the top bit of the original value. Thus,

a shift right by 1 divides the value by 2 and preserves the sign. For example:

static unsigned (log2ceil(width(a)+1)) b = 2;

omes 0b0011

mes 0b0001

 width of b needs to have a width equal to log2(width(a)+1) rounded up to the
log2ceil macro which is

ard library in the Platform Developer's Kit.

-, returns the n least significant bits of a value. The drop operator,
ts of a value. n must be a compile-time

lts in y being set to 7 and z being set to 12 (or 0xC in hexadecimal).

nation operator

The shift operators sh
valu
lost.

When shifti
shifting signed

static unsigned 4 a = 0b1101;

a = a >> b; //a bec
b--;
a = a >> b; //a beco

The
nearest whole number. This can be calculated using the
provided as part of the stand

6.5.2 Take / drop operators

The take operator, <
\\, returns all but the n least significant bi
constant. For example:

macro expr four = 8 / 2;
unsigned int 8 x;
unsigned int 4 y;
unsigned int 4 z;

x = 0xC7;
y = x <- four;
z = x \\ 4;

This resu

6.5.3 Concate

The concatenation operator, @, joins two sets of bits together into a result whose width is
the sum of the widths of the two operands. For example:

Handel-C Language Reference Manual

www.celoxica.com Page 110

unsigned int 8 x;
unsigned int 4 y;
unsigned int 4 z;

y = 0xC;
z = 0x7;
x = y @ z;

This results in x being set to 0xC7. The left operand of the concatenation operator forms
 most significant bits of the result.

e concatenation operator to zero pad a variable to a given width.

//width of zero constant inferred to be 8 bits
z =

If you want to use sign extension, you need to copy the 1 or the 0 from the most
significant bit into the new bits. For example:

signed int 8 i;

j = i[7] @ i[7] @ i[7] @ i[7] @ i;

r.
e width

10

y = x[4];
= x[7:3];

is results in nd z being set to 9. Note that the range of bits is of the
m MSB:LSB e. Thus, the range 7:3 is 5 bits wide.

e bit selection ixed at compile time.

the

You may also use th

unsigned int 8 x;
unsigned int 8 y;
unsigned int 16 z;

 (0 @ x) * (0 @ y);

signed int 12 j;

6.5.4 Bit selection

Individual bits or a range of bits may be selected from a value by using the [] operato
Bit 0 is the least significant bit and bit n-1 is the most significant bit where n is th
of the value. For example:

unsigned int 8 x;
unsigned int 1 y;
unsigned int 5 z;

x = 0b0100 01;

z

Th
for

 y being set to 0 a
 and is inclusiv

Th values must be f

Handel-C Language Reference Manual

www.celoxica.com Page 111

The value before or after ':' can be omitted. If you omit the value after the semi-colon,
then zero is assumed, so the LSBs are taken. If you omit the value before the semi-

 n–1 is assumed, so the MSBs are taken.

 is allowed in RAM, ROM and array elements. For example:

w[23];

 3 y;

RAM entry and the 4:2 selects three bits from the middle of the
 set to the value of the selected bits.

 least significant bit in the x[2] variable.

assign to bit ranges, only read from them.

colon, then

Bit selection

ram int 7
int 5 x[4];
int
unsigned int 1 z;

y = w[10][4:2];
z = (unsigned 1)x[2][0];

The 10 specifies the
value in the RAM w is

Similarly, z is set to the

 You cannot

6.5.5 Width operator

operator returns the width of an expression. It is a compile time constant.

tic operators are provided in Handel-C:

The width()
For example:

x = y <- width(x);

This takes the least significant bits of y and assigns them to x. The width() operator
ensures that the correct number of bits is taken from y to match the width of x.

6.6 Arithmetic operators

The following arithme

Handel-C Language Reference Manual

www.celoxica.com Page 112

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo arithmetic

ttempt to perform one of these operations on two expressions of differing widths or
pes results in a compiler error. For example:

int 3 x;
4 y;
gned 4 z;

 w + x; //
w + y; //

first statem and x have different widths. The second

Width of results

the same width as their operands. Thus, all overflow bits
e lost. For example:

unsigned int 8 x;

x = x + y;

ample results in x being set to 64 and z being set to 128.

 operators to expand the operands, it is possible to obtain
ion from the arithmetic operations. For instance, the carry bit of an

addition or the overflow bits of a multiplication may be obtained by first expanding the
:

Any a
ty

int 4 w;

int
unsi

y = ILLEGAL
z = ILLEGAL

The ent is illegal because w
statement is illegal because w and y are signed integers and z is an unsigned integer.

Al
ar

l operators return results of

unsigned int 8 y;
unsigned int 8 z;

x = 128;
y = 192;
z = 2;

z = z * y;

This ex

By using the bit manipulation
extra informat

operands to the maximum width required to contain this extra information. For example

Handel-C Language Reference Manual

www.celoxica.com Page 113

unsigned int 8 u;
nt 8 v;

igned int 9 w;

int 8 y;

he information obtainable from the addition and
n operations. Note that the constant zeros do not require a width
 because the compiler can infer their widths from the usage. The zeros in

 first assignment must be 1 bit wide because the destination is 9 bits wide while the
rands are only 8 bits wide. In the second assignment, the zero constants

st be 8 bits wide because the destination is 16 bits wide while the source operands are
only 8 bits wide.

= Not equal to

< Less than

Greater than

L qual

Greater than or equal
me width and return a single bit wide unsigned

u should write:

unsigned i
uns
unsigned int 8 x;
unsigned
unsigned int 16 z;

w = (0 @ u) + (0 @ v);
z = (0 @ x) * (0 @ y);

In this example, w and z contain all t
multiplicatio
specification
the
source ope
mu

6.7 Relational operators

Operator Meaning

== Equal to

!

>

<= ess than or e

>=
These operators compare values of the sa
int value of 0 f for true. This means that this conventional C code is invalid:

unsigned 8 w, x, y, z;

or false or 1

w = x + (y >z); // NOT ALLOWED

Instead, yo

w = x + (0 @ (y > z));

Handel-C Language Reference Manual

www.celoxica.com Page 114

6.7.1 Signed/unsigned compares

ned compares are handled automatically.

// Not allowed
 ...

f ((int)(0@x) > (y[7]@y))

7.2 Implicit compares

e Handel-C serts implicit compares with zero if a value is used as a
ndition on it

ile (1)

}

o:

 ...

Signed/signed compares and unsigned/unsig
Mixed signed and unsigned compares are not handled automatically. For example:

unsigned 8 x;
int 8 y;

if (x>y)

To compare signed and unsigned values you must sign extend each of the parameters.
The above code can be rewritten as:

unsigned 8 x;
int 8 y;

i
 ...

6.

Th compiler in
co s own. For example:

wh
{
 ...

Is directly expanded t

while (1 != 0)
{

}

6.8 Logical operators

Handel-C Language Reference Manual

www.celoxica.com Page 115

Operator Meaning

&& Logical and

|| Logical or

be the results of relational operators.
liar looking conventional C constructs.

 z)

 example, the variable x need not be 1 bit wide. If it is wider, the Handel-C
ts a compare with 0.

nt is true if x is not equal to 0 or y is greater than z.

 1-bit, the Handel-C compiler inserts compares with

itwise logical operators

Bitwise and

exclusive or

These operators perform bitwise logical operations on values. Both operands must be of

! Logical not
These operators are provided to combine conditions as in conventional C. Each operator
takes 1-bit unsigned operands and returns a 1-bit unsigned result.

Note that the operands of these operators need not
This feature allows some fami

Example

if (x || y >
 w = 0;

In this
compiler inser

if (x != 0 || y > z)
 w = 0;

The condition of the if stateme

C-like example

while (x || y)
{
 ...
}

Again, if the variables are wider than
0.

6.8.1 B

Operator Meaning

&

| Bitwise or

^ Bitwise

~ Bitwise not

the same type and width: the resulting value will also be this type and width. For
example:

Handel-C Language Reference Manual

www.celoxica.com Page 116

unsigned int 6 w;
unsigned int 6 x;
unsigned int 6 y;
unsigned int 6 z;

w = 0b101010;
x = 0b011100;
y = w & x;
z = w | x;
w = w ^ ~x;

This example results in y having the value 0b001000, z having the value 0b111110 and
w having the value 0b001001.

6.9 Conditional operator

Handel-C provides the conditional expression construct familiar from conventional C. Its
format is:

Expression ? Expression : Expression

The first expression is evaluated and if true, the whole expression evaluates to the result
of the second expression. If the first expression is false, the whole expression evaluates
to the result of the third expression. For example:

x = (y > z) ? y : z;

This sets x to the maximum of y and z. This code is directly equivalent to:

if (y > z)
 x = y;
else
 x = z;

The advantage of using this construct is that the result is an expression so it can be
embedded in a more complex expression. For example:

x = ((w==0) ? y : z) + 4;

In this case, the signedness and widths of x, y and z must match (as the value of y or z
may be assigned to x), but those of w need not.

6.10 Member operators (. / ->)

The structure member operator (.) is used to access members of a structure or mpram, or
to access a port within an interface.

Handel-C Language Reference Manual

www.celoxica.com Page 117

The structure pointer operator (->) can be used, as in AN
members of a structure or mpram, when the structure/mpr

SI-C. It is used to access the
am is referenced through a

pointer.

 Joan;

mpram Fred *mpramPtr;
mpramPtr = &Joan;
x = mpramPtr->Read[56];

 is made up o , t ucture me r operator e used to
mbers within the memory.

pRAM[1
u

pRA
10

mpram Fred
{
 ram <unsigned 8> ReadWrite[256]; // Read/write port
 rom <unsigned 8> Read[256]; // Read only port
}

If a memory f structures he str mbe can b
reference structure me

ram struct S com 00];
ram struct S (*ramStr ctPtr)[];
ramStructPtr = &com M;
x = (*ramStructPtr)[].a;

Handel-C Language Reference Manual

www.celoxica.com Page 118

7 Functions and macros

ns and macros: overview

extends the range of functions and macros offered by ANSI-C.

Return Typed Called by
?

Shared
hardware?

 Can have Yes No Yes

No Yes

ne functions Can have Yes No No

sor macros Can have No Yes No

xpressions Must have No Yes No

Must have No Yes Yes

None No Yes No

7.1.1 Functions and macros: language issues

loy call-by-value on their parameters, whereas macros effectively employ

7.1 Functio

Handel-C includes and

value? return reference
values and
parameters
?

Functions

Arrays of functions Can have Yes

Inli

Preproces

Macro e

Shared expressions

Macro procedures

Called by reference or value

Functions emp
call-by-reference. Consider the code:

void inline f_pseudoswap (int 12 x, int 12 y)
{
 par
 {
 x = y;
 y = x;
 }
}

Handel-C Language Reference Manual

www.celoxica.com Page 119

macro proc mp_swap (x, y)

 par

 x = y;

_swap(a,b) the values of a and b will be swapped.

ou call call f_pseudoswap(a,b) the values a and b are copied to the formal
rameters x and y of f_pseudoswap. x and y are swapped, but a and b are

ion with the same behaviour as the macro procedure is

d inline f_swap (int 12 * x, int 12 * y)

 {

Function parameters must have a type, although the width can sometimes be inferred by

The type of macro parameters is inferred from the type

ke the code more generic.

cro expressions
can be used to capture compile-time recursion.

If you use recursive macro procedures you need to use ifselect to guard the base case
(the condition where the recursion terminates). If you use recursive macro expressions,
you need to use select to guard the base case.

Macro procedure example:

{

 {

 y = x;
 }
}

If you call mp

If y
pa
unaffected. The swap funct
therefore

voi
{
 par

 * x = * y;
 * y = * x;
 }
}

with a call of the form f_swap(&a,&b).

Typed or untyped parameters

the compiler.

Macro expressions and procedures are un-typed in the sense that their formal
parameters can’t be given types.
in the call statement.

This means that it is better to use macros for parameterizable code. For example, macro
procedures can be used in libraries if you want to create multiple instances of hardware,
but leave them untyped to ma

Recursion

In Handel-C, functions may not be recursive. Macro procedure and ma

Handel-C Language Reference Manual

www.celoxica.com Page 120

unsigned 4 g;
macro proc p(x)

 g = 0@x;

 }

set cl k
void main()

ple:

 0, (unsigned 0) 0,

nd macros: sharing hardware

 to functions and shared expressions result in a single shared piece of hardware.
t to an ANSI-C function resulting in a single shared section of machine

ared hardware will reduce the size of your design, but care is needed if you have
parallel code where multiple branches access the shared hardware. Shared hardware

mpromise the speed of your design as it tends to lead to an increase in logic

 call to an inline function, macro procedure or macro expression results in a separate

ified number of copies to be created.

{
 ifselect(width(x) != 0)
 {

 p(x\\1);

 else
 delay;
}

oc = external;

{
 unsigned 4 i;
 p(i);
}

Macro expression exam

macro expr copycat (copies, bits) =
 select (copies <=
 bits @ copycat (copies - 1, bits));

7.1.2 Functions a

Calls
This is equivalen
code.

Sh

may also co
depth.

Each
piece of hardware.

Arrays of functions allow a spec

Handel-C Language Reference Manual

www.celoxica.com Page 121

7.1.3 Functions and macros: clock cycles

Macro expressions and shared expressions are evaluated in a single clock cycle, where
 assigned to a variable. Functions and macro procedures may involve

any cycles.

.4 Functions and macros: examples

 which a much-used code fragment can be expressed. The
 types

acros and functions, see:

ions and macros: overview

ros and functions

ine de_sesqui(s) ((s) + ((s) >> 1))
ui(d,s) ((d) = (s) + ((s) >> 1))

ui (s) = s + (s >> 1);

Shared expression

squi (s) = s + (s >> 1);

ro procedure

esqui (d, s)

 d = s;
 d += (d >> 1);

int * d, int s) //"shared" function without return

>> 1);

the expression is
control logic, and may take m

7.1

There are many ways in
examples below all multiply a value by 1.5. For hints on when to use the different
of m

• Funct

• Comparison of mac

Preprocessor macro

#def
#define dp_sesq

Macro expression

macro expr me_sesq

shared expr se_se

Mac

macro proc mp_s
{

}

Function

void f_sesqui (
{
 * d = s;
 * d += ((* d)
}

Handel-C Language Reference Manual

www.celoxica.com Page 122

int rf_sesqui (int s) //"shared" function with return

 return ret;

 * d, int s) //function array without return

 // function array with return

 ret += (ret >> 1);

}

 (int * d, int s) // inline function without return

t >> 1);

}

How to c

 The exam code such as:

{
 int ret;
 ret = s;

 ret += (ret >> 1);

}

Array of functions

void af_sesqui [5] (int
{
 * d = s;
 * d += ((* d) >> 1);
}

int arf_sesqui [5] (int s)
{
 int ret;
 ret = s;

 return ret;

Inline function

void inline if_sesqui
{
 * d = s;
 * d += ((* d) >> 1);
}

// inline function with return
int inline irf_sesqui (int s)
{
 int ret;
 ret = s;
 ret += (re
 return ret;

all the example macros and functions

ple macros and functions above can be called using

Handel-C Language Reference Manual

www.celoxica.com Page 123

{

 x = 10;

 y = arf_sesqui[2] (x);

y, x);

 by prototyping them. You prototype by declaring an object at the top of the

y

ou can collect all the prototypes into a single header file and then #include it within
your code files.

You ca cess variables declared in other files by using the extern keyword.

 int 5 x, y;

 y = de_sesqui (x);
 dp_sesqui (y, x);

 y = me_sesqui (x);

 y = se_sesqui (x);

 mp_sesqui (y, x);

 f_sesqui (& y, x);
 y = rf_sesqui (x);

 af_sesqui[2] (& y, x);

 if_sesqui (&
 y = irf_sesqui (x);
}

7.1.5 Accessing external names

You can refer to functions, macros and shared expressions that have been defined in
another file
file in which it is used.

Function prototypes are in the following format:

returnType functionName(parameterTypeList);

Macro prototypes are of the form:

macro expr Name(parameterList);

macro proc Name(parameterList);

Functions and macros may be static or extern. static functions and macros may onl
be used in the file where they are defined.

Y

n ac

Handel-C Language Reference Manual

www.celoxica.com Page 124

 You cannot use variables to communicate between clock domains. Variables
are restricted to a single clock domain. The only items that can connect across
separate clock domains are channels and mprams.

7.1.6 Recursion in macros and functions

cros can be recursive in Handel-C, but due to the absence of a stack in Handel-C,
ot be recursive.

 must be determinable at compile-time.

ctions

r to functions in ANSI-C. A function is compiled to be a single shared
ce of hardware, much as a C compiler generates a single shared block of machine

ilar to macros in that they are expanded wherever they are used.

 may also use a macro proc (a parameterized macro procedure).

ctions take arguments and return values. A function that does not return a value is of
void. Valid return types are integers and structs. The default return type is int

 do not take arguments have void as their parameter list, for

hanges take place on this copy.

gnal. All others (and structures containing them) must be
passed by reference. Arrays and functions can also only be passed by reference.

Ma
functions cann

The depth of recursion, though unbounded,

7.2 Introduction to fun

Functions are simila
pie
code.

Handel-C has been extended to provide arrays of functions and inline functions.

Arrays of functions provide multiple copies of a function. You can select which copy is
used at any time.

Inline functions are sim

You

Fun
type
undefined. Functions that
example:

void main(void)

As in ANSI-C, function arguments are passed by value. This means that a local copy is
created that is only in scope within the function. C

To access a variable outside the function, you must pass the function a pointer to that
variable. A local copy will be made of the pointer, but it will still point to the same
variable. This is known as passing by reference.

Architectural types (hardware constructs) must be passed by reference (a pointer to or
address of the construct). The only architectural type that can be passed to or returned
by a function by value is a si

Handel-C Language Reference Manual

www.celoxica.com Page 125

7.2.1 Function definitions and declarations

header file and #include that in every file
are used.

The definition of a function consists of its name and parameters followed by the function

{

int 4 add (int 4 left, int 4 right)

here is nothing returned from the function, a void return type must be specified.

Old-style ANSI-C function definitions, where the types of the parameters are specified
between the parameter list and the function body, are not supported. For example:

int 4 add (left, right) //old-style not supported
int 4 left, right;
{
 return left + right;
}

Function declaration

A function declaration lists the function name, return type and the types of the
parameters. The syntax is:

returnType Name(parameterType_1 parameter_1, parameterType_n parameter_n);

Note the semicolon following the parameter list.

Function definitions and declarations are defined as in ANSI-C. Functions must be
declared in every file that they are used in, though they should only be defined once. It is
common to put function declarations into a
where they

Function definition

body (the block of code that it performs when it is called).

The syntax is:

returnType Name(parameterList)

 declarations
 statements
}

For example:

{
 int 4 sum;
 sum = left + right;
 return sum;
}

If t

Handel-C Language Reference Manual

www.celoxica.com Page 126

You may omit the parameter names in a declaration. The parameter types are used by
the compiler to check that the correct types are used for the function arguments within

-style ANSI-C declarations, where the names but not the type of the parameters are

: scope

fined within other functions. By default, functions are extern
lso be defined as static (they can only be

ed).

.3 Arrays of functions

y of functions is a collection of identical functions. It is not the same as an array
ach of whose elements can point to a different function). A function

run different copies of the same function in parallel. Without this
e way to run a function in parallel with itself would be to explicitly

s with different names.

w functions to be copied and shared neatly. For example:

unsigned x, unsigned y)

 return (x + y);

claration, with square brackets added to specify that
n array declaration as well as a function declaration. The general form of a

ction array declaration is:

e Name[Size](parameterList);

the rest of the file.

Old
given, are not supported.

7.2.2 Functions

Func
(th

tions cannot be de
ey can be used anywhere). Functions can a

used in the file in which they are defin

7.2

An arra
of function pointers (e
array allows you to
construct, the only saf
declare two function

Function arrays allo

unsigned func[2](
{

}

Syntax

The syntax is a normal function de
this is a
fun

returnTyp

Handel-C Language Reference Manual

www.celoxica.com Page 127

7.2.4 Function arrays: example

 clock = external "P1";

Function array prototype

 unsigned short r1, r2, r3, r4;
 unsigned result;

 par
 {
 a = 12;
 b = 22;
 c = 32;
 d = 42;
 e = 52;
 f = 62;
 }

 par
 {
 r1 = func[0](a, b);
 r2 = func[1](c, d);
 }

 par
 {
 r3 = func[0](e, f);
 r4 = func[1](r1, r2);
 }

 result = func[0](r3, r4);
}

set

//
unsigned func[2](unsigned x, unsigned y);

// Main program
void main(void)
{
 unsigned a, b, c, d, e, f;

Handel-C Language Reference Manual

www.celoxica.com Page 128

// Function array definition
signed func[2](unsigned x, unsigned y)

 return (x + y);

.5 Function arrays example with static variables

ach function in the array has its own copy of the static variable
’s copy of ‘t’ is modified, func[1]’s copy remains unaffected.

un
{

}

7.2

In the example below e
‘t’. Thus, if func[0]

Handel-C Language Reference Manual

www.celoxica.com Page 129

set clock = external "C1";

unsigned func[2](unsigned a, unsigned b)

 q = 1;
 r = 1;

 t = 1;

 }

 par
 {
 v = func[0](p, q); // v = 3 (t in func[0] is 1)
 w = func[1](r, s); // w = 3 (t in func[1] is 1)
 }

 x = func[0](t, u); // x = 4 (t in func[0] is 2)
 y = func[0](v, w); // y = 9 (t in func[0] is 3)

 z = func[1](x, y); // z = 15 (t in func[1] is 2)
}

7.2.6 Function pointers

These are a very powerful, yet potentially confusing feature. In situations where any one
of a number of functions can be called at a particular point, it is neater and more concise
to use a function pointer, where the alternative might be a long if-else chain, or a long
switch statement (see example).

{
 static unsigned t = 0;
 t++;
 return a + b + t;
}

void main(void)
{
 unsigned 7 p, q, r, s, t, u, v, w, x, y, z;

 par
 {
 p = 1;

 s = 1;

 u = 1;

Handel-C Language Reference Manual

www.celoxica.com Page 130

Function pointers can be assigned with or without the address operator & (similar to
signing array addresses). Functions pointed to can be called with or without the

out the &

hk)(a, b);

tten in the shorthand form:

as it tips off anyone reading the code that a function pointer

nction pointers example

ng program:

as
indirection operator.

A function name can be assigned to a pointer with

p = addeven;

although the & format is clearer:

p = &addeven;

A function pointed to can be called by writing

(*c

This can also be wri

chk(a, b);

The first form is preferable,
is being used.

7.2.7 Fu

Consider the followi

Handel-C Language Reference Manual

www.celoxica.com Page 131

set clock = external "P1";

igned 1 check(short int *a, short int *b,
1 (*chk)(const short int *,

hort int *));

t short int *x, const short int *y);
minuseven(const short int *x, const short int *y);

d 1 diveven(const short int *x, const short int *y);
onst short int *x, const short int *y);

d main(void)

 unsigned 1 result;
short *, const short *);

 par

 m = 19;

 }

 {

 {
 case 0:

 break;

 p = minuseven;
 break;

 p = diveven;

 case 3:

uns
 unsigned
 const s

unsigned 1 addeven(cons
unsigned 1
unsigne
unsigned 1 modeven(c

voi
{
 short int m, n;
 unsigned 2 choice;

 unsigned 1 (*p)(const

 {

 n = 47;

 do

 switch (choice)

 p = addeven;

 case 1:

 case 2:

 break;

 p = modeven;
 break;
 default:
 delay;

Handel-C Language Reference Manual

www.celoxica.com Page 132

 break;
 }

 par
 {
 result = check(&m, &n, p);
 choice++;
 }

 unsigned 1 (*chk)(const short int *,
 const short int *))
{
 return (*chk)(a, b);
}

unsigned 1 addeven(const short int *x, const short int *y)
{
 return (unsigned)(*x + *y)[0];
}

unsigned 1 minuseven(const short int *x, const short int *y)
{
 return (unsigned) (*x - *y)[0];
}

unsigned 1 diveven(const short int *x, const short int *y)
{
 return (unsigned) (*x / *y)[0];
}

unsigned 1 modeven(const short int *x, const short int *y)
{
 return (unsigned) (*x % *y)[0];
}

The function addeven checks whether the sum of two numbers is even. Similar checks
are carried out by minuseven (difference of two numbers), diveven (division) and
modeven (modulus). The function check simply calls the function whose pointer it
receives, with the arguments it receives. This gives a consistent interface to the xxxeven

 }
 while(choice);
}

unsigned 1 check(short int *a, short int *b,

Handel-C Language Reference Manual

www.celoxica.com Page 133

functions. Pay close attention to the declaration of check, and of function pointer p. The
entheses around *p (and *chk in the declaration of check) are necessary for the

rrect interpretation.

tion

e the main program body, check was called like this:

 &n, p);

written like this:

even);

ing the need for an additional pointer variable.

e main section written using this form of expression:

par
compiler to make the co

Possible code optimiza

Insid

check(&m,

It could have been

check(&m, &n, xxx

eliminat

Here is th

Handel-C Language Reference Manual

www.celoxica.com Page 134

void main(void)
{
 short int m, n;
 unsigned 2 choice;
 unsigned 1 result;

 par
 {
 m = 19;
 n = 47;

 switch (choice)
ase 0:

 result = check(&m, &n, &addeven);

e 1:
heck(&m, &n, &multeven);

e 2:
 result = check(&m, &n, &diveven);

k;
 case 3:
 result = check(&m, &n, &modeven);

 default:
;
ce++;

le(choice);

ction corresponds to a shared piece of hardware, which may only be
d by one thread at a time. Simultaneous calls to a function, or even overlapping

 }

 do
 {

 c

 break;
 cas
 result = c
 break;
 cas

 brea

 break;

 break
 choi
 }
 whi
}

7.2.8 Simultaneous function calls

In Handel-C, a fun
use
execution of a function, will cause problems.

Handel-C Language Reference Manual

www.celoxica.com Page 135

You can check for simultaneous accesses to a function when you are debugging your
 by using the Detection of simultaneous function calls option on the Debug tab in Project

 the -S+parfunc option in the command line compiler.

 can ensure that the function usage does not overlap by declaring functions to be
ded whenever they are used) or by declaring an array of

s, one to be used in each parallel branch. This is illustrated in the example below.

c(int x, int y);

e, f, foo;
// etc ...

 par

 a = func(b, c);

 d = func(e, f); // NOT ALLOWED
 }

 if (x == y)

0;

 return(x);

This is not allowed because part of the single function is used twice in the same clock
cycle.

The code can be re-written to use inline functions, or an array of functions:

code
Settings, or

You
inline (so they are expan
function

Example

int fun

void main(void)
{
 int a, b, c, d,

 {

 {
 b = foo;

 }
 // etc ...
}

int func(int x, int y)
{

 delay;
 else
 {
 x = x % y;
 }
 x *= 1

}

Handel-C Language Reference Manual

www.celoxica.com Page 136

inline int func(x, y);

 a = func(b, c);

7.2.9 t

Because each statement in Handel-C must take a single clock cycle, you cannot have
ions in a single statement.

 can write

legal

par
{

 {
 b = foo;
 d = func(e, f);
 }
}

or

int func[2](x, y);

par
{
 a = func[0](b, c);
 {
 b = foo;
 d = func[1](e, f);
 }
}

 Multiple functions in a statemen

multiple funct

Instead of

y = f(g(x));// illegal

you

z=g(x);
y=f(z);

Instead of

y = f(x) + g(z); // il

you can write:

Handel-C Language Reference Manual

www.celoxica.com Page 137

par

 a = f(x);

 compiler passes source code through a standard C preprocessor before

ive

Handel-C provides additional macro support to allow more powerful macros to be defined
o expressions). In addition, Handel-C supports shared

macro expressions to generate one piece of hardware which is shared by a number of

ed macro expressions are of two types:

e

• a constant expression

r to the #define macro. Whenever DATA_WIDTH appears
in the program, the constant 15 is inserted in its place.

xample:

 (y + z);

w = sum;

{

 b = g(z);
}

 a+b; y =

7.3 Introduction to macros

The Handel-C
compilation allowing the use of #define to define constants and macros in the usual
manner. Since the preprocessor can only perform textual substitution, some useful
macro constructs cannot be expressed. For example, there is no way to create recurs
macros using the preprocessor.

(for example, recursive macr

parts of the overall program similar to the way that procedures allow conventional C to
share one piece of code between many parts of a conventional program.

7.3.1 Non-parameterized macro expressions

Non-parameteriz

• simple constant equivalent to #defin

Constant

This first form of the macro is a simple expression. For example:

macro expr DATA_WIDTH = 15;

int DATA_WIDTH x;

This form of the macro is simila

Constant expression

To provide a more general solution, you can use a real expression. For e

macro expr sum = (x + y) @

v = sum;

Handel-C Language Reference Manual

www.celoxica.com Page 138

7.3.2 Parameterized macro expressions

Handel-C allows macros with parameters. For example:

ing code:

) operator is used to mean ‘select at compile time’. Its general usage is:

sion1, Expression2, Expression3)

e generates hardware to compare the width of the variable x with 4 and set w
 value of y or z depending on whether this value is equal to 4 or not.

t what was intended because both width(x) and 4 are constants.
intended was for the compiler to check whether the width of x was 4

This is more useful when macros are combined with this feature.

macro expr add3(x) = x+3;

y = add3(z);

This is equivalent to the follow

y = z + 3;

This form of the macro is similar to the #define macro in that every time the add3()
macro is referenced, it is expanded in the manner shown above. In this example, an
adder is generated in hardware every time the add3() macro is used.

7.3.3 select operator

The select(...

select(Expres

Expression1 must be a compile time constant. If Expression1 evaluates to true then
the Handel-C compiler replaces the whole expression with Expression2. If Expression1
evaluates to false then the Handel-C compiler replaces the whole expression with
Expression3.

Comparison with conditional operator

The difference between select and the conditional operator is seen in this example:

w = (width(x)==4 ? y : z);

The exampl
to the

This is probably no
What was probably
and then simply replace the whole expression above with y or z according to the value.
This can be written as follows:

w = select(width(x)==4 , y , z);

In this example, the compiler evaluates the first expression and replaces the whole line
with either w=y; or w=z;. No hardware for the conditional is generated.

Combining with macros

Handel-C Language Reference Manual

www.celoxica.com Page 139

macro expr adjust(x, n) =
n, (0 @ x), (x <- n));

d 4 a;

unsigned 6 c;

a, width(b));
c, width(b));

 macro that equalizes widths of variables in an assignment. If the
ht hand side of an assignment is narrower than the left hand side then the right hand

 most significant bits. If the right hand side is wider
and side, the least significant bits of the right hand side must be taken and

ed to the left hand side.

..) operator is used here to tell the compiler to generate different
ro. The last two

to its own if the width of one of the variables changes. Suppose that
is discovered that the variable a is not wide enough and needs to be

its wide to hold some values used during the calculation. Using the macro, the only
ed would be to alter the declaration of the variable a. The compiler would

= 0 @ a; with b = a <- 5; automatically.

s form of macro also comes in useful when variables of undefined width are used. If
fer widths of variables, it may be tedious to work out by hand
ent is required. By using the select(...) operator in this way,

ed without you having to know the widths of variables at

 checks the result of a compile-time constant expression at compile time. If the
condition is true, the following statement or code block is compiled. If false, it is dropped

. Thus, whole statements can be selected
or discarded at compile time, depending on the evaluation of the expression.

 select(width(x) <

unsigne
unsigned 5 b;

b = adjust(
b = adjust(

This example is for a
rig
side must be padded with zeros in its
than the left h
assign

The select(.
expressions depending on the width of one of the parameters to the mac
lines of the example could have been written by hand as follows:

b = 0 @ a;
b = c <- 5;

The macro comes in
during debugging, it
8 b
change requir
then replace the statement b

Thi
the compiler is used to in
which form of the assignm
the correct expression is generat
any stage.

7.3.4 ifselect

ifselect

and an else condition can be compiled if it exists

The ifselect construct allows you to build recursive macros, in a similar way to select.
It is also useful inside replicated blocks of code as the replicator index is a compile-time
constant. Hence, you can use ifselect to detect the first and last items in a replicated
block of code and build pipelines.

Handel-C Language Reference Manual

www.celoxica.com Page 140

Syntax

ifselect (condition)
 statement 1
[else

te]

Example

 12 a;
t 13 b;

idth(a) >= width(b))

e

igned 31 out;

 (r = 0; r < 16; r++)

 q[r] = init;

ions

 (those defined with macro expr) and the
 operator, recursive macros can express complex hardware simply. This

type of macro is particularly important in Handel-C where the exact form of the macro
may depend on the width of a parameter to the macro.

 sta ment 2

int
in
int undefined c;

ifselect(w
 c = a;
els
 c = b;

c is assigned to by either a or b, depending on their width relationship.

Pipeline example

unsigned init;
unsigned q[15];
uns

init = 57;
par
{
 ifselect(r == 0)

 else ifselect(r == 15)
 out = q[r-1];
 else
 q[r] = q[r-1];
}

7.3.5 Recursive macro express

Preprocessor macros (those defined with #define) cannot generate recursive
expressions. By combining Handel-C macros
select(...)

Handel-C Language Reference Manual

www.celoxica.com Page 141

Variable sign extension example

When assigning a narrow signed variable to a wider variable, the most significant bit
the wide variable should be padded with the sign bit (MSB) of the narrow variable.

Value 4-bit Conversion to 8-

s of

representation bit representation

macro expr copy(x, n) =
1)));

m-width(y)) @ y;

int a;
 be wider than a

x concatenated together. The
o evaluate whether it is on its last

teration (in which case it just evaluates to the expression) or whether it should continue
to recurse by a further level.

The extend macro concatenates the sign bit of its parameter m-k times onto the most
 k

n width(a).

-2 0b1110 0b11111110

6 0b0110 0b00000110

The following code suffices for a 4-bit to 8-bit conversion

int 8 x;
int 4 y;

x = y[3] @ y[3] @ y[3] @ y[3] @ y;

but it is tedious for variables that differ by a significant number of bits. It also does not
deal with the case when the exact widths of the variables are not known. What is needed
is a macro to sign extend a variable. For example:

 select(n==1, x, (x @ copy(x, n-

macro expr extend(y, m) =
 copy(y[width(y)-1],

int b; // Where b is known to

b = extend(a, width(b));

The copy macro generates n copies of the expression
macro is recursive and uses the select(...) operator t
i

significant bits of the parameter. Here, m is the required width of the expression y and
is the actual width of the expression y.

The final assignment correctly sign extends a to the width of b for any variable widths
where width(b) is greater tha

Handel-C Language Reference Manual

www.celoxica.com Page 142

7.3.6 Recursive macro expressions example

lustrates the generation of large quantities of hardware from simple
xample is a multiplier whose width depends on the parameters of the
gh Handel-C includes a multiplication operator as part of the language, this

e for a single cycle long multiplication operation
is:

ro expr multiply(x, y) = select(width(x) == 0, 0,
 1, y << 1) +
y : 0));
 c);

 then recurses by
dropping the LSB of x and multiplying y by 2 until there are no bits left in x. The overall

expression that is the sum of each bit in x multiplied by y. This is the familiar
o

ich is a standard long multiplication calculation.

C generates all the hardware required for every expression in the

The shared expression has the same format as a macro expression but does not allow
 to generate recursive

shared expressions.

This example il
macros. The e
macro. Althou
example serves as a starting point for generating large regular hardware structures using
macros.

The multiplier generates the hardwar
from a single macro. The source code

mac
 multiply(x \\
 (x[0] == 1 ?
a = multiply (b ,

At each stage of recursion, the multiplier tests whether the bottom bit of the x parameter
is 1. If it is then y is added to the ‘running total’. The multiplier

result is an
long multiplication structure. For example, if both parameters are 4 bits wide, the macr
expands to:

a = ((b \\ 3)[0]==1 ? c<<3 : 0) +
 ((b \\ 2)[0]==1 ? c<<2 : 0) +
 ((b \\ 1)[0]==1 ? c<<1 : 0) +
 (b[0]==1 ? c : 0);

This code is equivalent to:

a = ((b & 8)==8 ? c*8 : 0) +
 ((b & 4)==4 ? c*4 : 0) +
 ((b & 2)==2 ? c*2 : 0) +
 ((b & 1)==1 ? c : 0);

wh

7.3.7 Shared expressions

By default, Handel-
whole program. This can mean that large parts of the hardware are idle for long periods.
Shared expressions allow hardware to be shared between different parts of the program
to decrease hardware usage.

recursion. You can use recursive macro expressions or let...in

Handel-C Language Reference Manual

www.celoxica.com Page 143

Example

a = b * c;
 * f;

 h * i;

h one will only be used once and none of them
ardware. You can improve the hardware

ciency with a shared expression:

In this example, only one multiplier is built and it is used on every clock cycle. If speed is

ns
be built to route the data paths. Some expressions

use less hardware than the multiplexors associated with the shared expression.

h nnot use recursion directly, macro expressions can be

t(width(x) == 0, 0,

;

);

to be shared between the two assignments.

shared expressions

ts of the program on the

d = e
g =

This code generates three multipliers. Eac
ultaneously. This is a massive waste of hsim

effi

shared expr mult(x, y) = x * y;

a = mult(b, c);
d = mult(e, f);
g = mult(h, i);

required, you can build three multipliers executing in parallel.

Warning

It is not always the case that less hardware is generated by using shared expressio
because multiplexors may need to

7.3.8 Using recursion to generate shared expressions

Alt ough shared expressions ca
used to generate hardware which can then be shared using a shared expression. For
example, to share a recursive multiplier you could write:

macro expr multiply(x, y) = selec
 multiply(x \\ 1, y << 1) +
 (x[0] == 1 ? y : 0))

shared expr mult(x, y) = multiply(x, y

a = mult(b, c);
d = mult(e, f);

The macro expression builds a multiplier and the shared expression allows that hardware

7.3.9 Restrictions on

Shared expressions must not be shared by two different par
same clock cycle. For example:

Handel-C Language Reference Manual

www.celoxica.com Page 144

shared expr mult(x, y) = x * y;

par
{

e single multiplier is used twice in the same clock cycle.

in parallel branches are not shared on the

7.3.10 let ... in

expressions. In this
whilst still being grouped

ether in a single block of code. They also provide easy sharing of recursive macros.

n of a local macro; the in keyword ends the
ts scope.

. The second line defines y within
ro definition. The last line expresses the value of the macro in full.

dependent let …in definitions

/ 3; in

) + ((a-b) * 4) + ((b-a) * 2);

Related let …in definitions

 + y; in

 a = mult(b, c);
 d = mult(e, f); // NOT ALLOWED
}

This is not allowed because th

You need to ensure that shared expressions
same clock cycle.

let and in allow you to declare macro expressions within macro
way, complex macros may be broken down into simple ones,
tog

The let keyword starts the declaratio
declaration and defines i

Example

macro expr Fred(x) =
 let macro expr y = x*2; in
 y+3; // Returns x*2+3

The top line defines the macro name and parameters
the mac

In

macro expr op(a, b) =
 let macro expr t2(x) = x * 2; in
 let macro expr d3(x) = x
 let macro expr t4(x) = x * 4; in
 t2(a) + d3(b) + t4(a - b) + t2(b - a);

is equivalent to writing

macro expr op(a, b) = (a * 2) + (b / 3

macro expr op(a, b) =
 let macro expr sum(x, y) = x
 let macro expr mult(x, y) = x * sum(x, y); in
 mult(a, b) - (b * b);

Handel-C Language Reference Manual

www.celoxica.com Page 145

sum is defined within the macro definition, then mult is defined using sum. This example
is equivalent to:

macro expr op(a, b) = (a * (a + b)) - (b * b);

Shared recursive macro

A recursive multiplier illustrating the way in which let…in can be used to share recursive

 macro expr multiply(x, y) =
th(x) == 0, 0, multiply(x \\ 1, y << 1)
 1 ? y : 0)); in

 multiply(p, q)

ccessible outside the outer macro

 let macro expr Sqr(x) = x*x; in

 k = Cube(2); //Error - out of scope

edures

dures may be used to replace complete statements to avoid tedious
le coding. A single macro procedure can be expanded into a complex block

generates the hardware for the statement each time it is referenced.

 general syntax of macro procedures is:

proc Name(Params) Statement

 be prototyped (like functions). This allows you to declare them in one file
prototype consists of the name of the macro plus a list

the names of its parameters. E.g.

macros.

shared expr mult(p, q) =
 let
 select(wid
 + (x[0] ==

Scope of definitions

The inner macros are not a

{
 chanout <unsigned 16> och;
 int 16 i, j, k;
 {
 macro expr Cube(x) =

 x * Sqr(x)
 i = Cube(3) // Correct use
 j = Sqr(3) // Error - out of scope
 }

}

7.3.11 Macro proc

Macro proce
etition whirep

of code. It

The

macro

Macros may
use them in another. A macro and

of

macro proc work(x, y);

Handel-C Language Reference Manual

www.celoxica.com Page 146

If you have local or static declarations within the macro procedure, a copy of the va
will be cre

riable
ated for each copy of the macro.

ameter list. For
example:

cro proc MyMacro ();

 output(x, y)
 {

 out ! y;

wice to the channel out. This
xample also illustrates that the statement may be a code block - in this case two
structions executed sequentially.

It expands to 4 channel output statements.

7.3.12 Macro procedures compared to pre-processor macros

Macro procedures differ from preprocessor macros in that they are not simple text
replacements. The statement section of the definition must be a valid Handel-C
statement.

The following code is valid as a #define pre-processor macro but not as a macro
procedure:

#define test(x,y) if (x!=(y<<2)) // not valid as a macro procedure as not a
complete statement

test(a,b)
{
 a++;
}
else
{
 b++;
}

Incomplete statements will not compile as macro procedures:

Macro procedures that don't take any parameters require an empty par

ma

Example

macro proc

 out ! x;

 }

output(a + b, c * d);
output(a + b, c * d);

This example writes the two expressions a+b and c*d t
e
in

Handel-C Language Reference Manual

www.celoxica.com Page 147

macro proc test(x,y) if (x!=(y<<2)) // Incomple
compile

te statement, will not

fined to be a complete statement so the Handel-C
er generates an error. This restriction provides protection against writing code

ult to maintain.

A complete statement will not successfully replace an incomplete one:

macro proc test(x,y) if (x!=(y<<2)); // Complete statement will compile

test(a,b) // will expand to if (x!=(y<<2));
{
 a++;
}
else // this else has no associated if
{
 b++;
}

Here, the macro procedure is not de
compil
which is generally unreadable and diffic

Handel-C Language Reference Manual

www.celoxica.com Page 148

8 Introduction to timing

portant for writing code that executes in fewer clock cycles but may

difference between correct and incorrect code when using Handel-C’s
programmers can immediately tell which instructions execute on

 clock cycles. This information becomes very important when your program
s multiple interacting parallel processes.

t clock cycles also becomes important when considering interfaces to
. It is important to understand timing issues before moving on to

lementing such interfaces because it is likely that the external device will place
nts on when signals should change.

 basic rule for working out the number of cycles used in a Handel-C program is:

ent and delay take 1 clock cycle. Everything else is free.

A Handel-C program executes with one clock source for each main statement. It is
important to be aware exactly which parts of the code execute on which clock cycles.
This is not only im
mean the
parallelism. Experienced
which

taincon

Knowing abou
external hardware
imp
constrai

Avoiding certain constructs has a dramatic influence on the maximum clock rate that
your Handel-C program can run at.

8.1 Statement timing

The

 Assignm

• One clock cycle is used every time you write an assignment statement or a

• Channel communications use one clock cycle in the same clock domain if both
s are ready to communicate. If one of the branches is not ready for the

data transfer then execution of the other branch waits until both branches
become ready.

can write any other piece of code and not use any clock cycles to execute
it.

x = y;
x = (((y * z) + (w * v))<<2)<-7;

delay statement. releasesema also uses one clock cycle.
A special case statement is supported of the form:
a = f(x);
to allow function calls which take multiple clock cycles.

end

• You

8.1.1 Example timings

Statements

Handel-C Language Reference Manual

www.celoxica.com Page 149

Each of these statements takes one clock cycle.

plex expression can be evaluated in a single clock cycle.
ndel-C builds the combinational hardware to evaluate such expressions; they do not

ken down into simpler assembly instructions as would be the case for
.

rallel statements

in a single cycle because each branch of the parallel statement takes
. This example illustrates the benefits of parallelism. You can have as

pendent instructions as you wish in the branches of a parallel
nt. The total time for execution is the length of time that the longest branch

es to execute. For example:

= b;
= d;

 }

s code takes two clock cycles to execute. On the first cycle, x = y and a = b take
On the second clock cycle, c = d takes place. Since both branches of the par

tement must complete before the par block can complete, the first branch delays for
e while the second instruction in the second branch is executed.

While loop

s a total of 6 clock cycles to execute. One cycle is taken by the assignment
5 to x. Each iteration of the while loop takes 1 clock cycle for the assignment of x-1

to x and the loop body is executed 5 times. The condition of the while loop takes no

Notice that even the most com
Ha
need to be bro
conventional C

Pa

par
{
 x = y;
 a = b * c;
}

This code executes
only one clock cycle
many non-interde
stateme
tak

par
{
 x = y;
 {
 a
 c

}

Thi
place.
sta
one clock cycl

x = 5;
while (x>0)
{
 x--;
}

This code take
of

clock cycles as no assignment is involved.

Handel-C Language Reference Manual

www.celoxica.com Page 150

For loop

for (x = 0; x < 5; x ++)
{
 a += b;
 b *= 2;

quivalent:

ired for the initialization of x and
e body. Since the body is executed 5 times, this gives a

cles.

n

 x = a;

}

This code takes exactly one clock cycle to execute. Only one of the branches of the if
temen uted, eit a or x = b. Each of these assignments takes one

me is taken for the test because no assignment is
de. A different is:

f (a>b)
{
 x = a;

no else branch. This code therefore takes either
clock cycles if a is not greater than b.

}

This code has an almost direct e

{
 x = 0;
 while (x<5)
 {
 a += b;
 b *= 2;
 x ++;
 }
}

This code takes 16 clock cycles to execute. One is requ
three for each execution of th
total of 16 clock cy

Decisio

if (a>b)
{

}
else
{
 x = b;

sta t is exec her x =
clock cycle.
ma

 Notice again that
 slightly

 no ti
example

i

}

Here, if a is not greater than b, there is
1 clock cycle if a is greater than b or no

Handel-C Language Reference Manual

www.celoxica.com Page 151

Channels

Channel timings can be complex. The simplest example is with a channel link of
folength 0 (default):

 unsigned 8 link;

se both the transmitting and
g branches are ready to transfer at the same time. All that is required is the

e all assignments, takes 1 clock cycle. A more complex

d 8 link;

 { // Parallel branch 1

Here
How e
execute be is ready. The
usage of clock cycles is as follows:

ycle Branch 1 Branch 2

3 Channel output Channel input

FIFOs

FIFOs add another layer of complexity.

fi

chan
par
{
 link ! x; // Transmit
 link ? y; // Receive
}

This code takes a single clock cycle to execute becau
receivin
assignment of x to y which, lik
example is:

chan unsigne
par
{

 a = b;
 c = d;
 link ! x;
 }

 link ? y; // Parallel branch 2
}

, the first branch of the par statement takes three clock cycles to execute.
ev r, the second branch of the par statement also takes three clock cycles to

cause it must wait for two cycles before the transmitting branch

C

1 a = b; delay

2 c = d; delay

Handel-C Language Reference Manual

www.celoxica.com Page 152

chan unsigned link_FIFO with {fifolength=4};

 i++; //Cannot be in parallel to channel write
 //Do not change a variable in parallel with sending

Parallel branch 1

re, the write branch of the par statement takes two clock cycles to execute and the

i because it is a FIFO, the write branch can keep writing until the
clock cycle, the read branch reads the first value from the FIFO.

 The precise timing of FIFOs depends on many different factors. The

int i = 0;

par
{
 while(1)
 {

it
 link_FIFO ! i; //
 }
 // Parallel branch 2
 a = b; //Parallel code: used here instead of delay
 c = d;
 link_FIFO ? y;
 }
}

He
read branch takes three clock cycles to execute. If it were a simple channel, the write
branch would have to wait until the channel had been read, before it could write the next
value of . However,
FIFO is full. On the third

When the FIFO is full the first branch must wait until the FIFO is read from before it can
write to it again.

throughput will be close to one word per cycle for sufficiently large FIFOs.

FIFO: channel and FIFO comparison code

This example shows a loop using a channel to communicate between two processes.

Handel-C Language Reference Manual

www.celoxica.com Page 153

Process A:
static unsigned 4 Val = 1;
while(1)

 ! Val; // Send

unsigned 4 Count;

0 or more cycles
 while (Count != 0)
 {

t--;

 ? Count; // Receive
 delay;

rocess always take place on the same clock cycle in the

ample with FIFO

This shows the same process, but using a FIFO with fifolength 4. The loop in process A
ould execute 4 times without pausing and then run after each time process B reads

FIFO.

{
 Val = Val[2:0]@Val[3];
 MyChan
 delay;
}

Process B:
static
while(1)
{ // wait

 Coun
 }
 MyChan

}
The delay statements in each p

main. same clock do

Ex

w
from the

Handel-C Language Reference Manual

www.celoxica.com Page 154

chan myFIFO with {fifolength = 4};

 B:
gned 4 Count;

it 0 or more cycles
1)

 {

 }
Count; // Rec

];
d

}
en ore detail.

iming

Process
static unsi
while(1)
{ // wa
 while (Count !=

 Count--;

 MyFIFO ? eive
 delay;
}

Process A:
static unsigned 4 Val = 1;
while(1)
{
 Val = Val[2:0]@Val[3
 MyFIFO ! Val; // Sen
 delay;

 See the summary of statem t timings for m

8.1.2 Statement t summary

Handel-C Language Reference Manual

www.celoxica.com Page 155

Statement

{...}

par {...}

Function(), break, goto, s

Expression); f Expression is assigned on return,

Var

Variable ++; 1 clock cycle

Variable --; 1 clock cycle

++ Variable; 1 clock cycle

Variable += Expression; 1 clock cycle

Variable *= Expression; 1 clock cycle

clock cycle

e

pression; 1 clock cycle

iable |= Expression; 1 clock cycle

1 clock cycle

Channel ? Variable; 1 clock cycle when transmitter is ready (in same clock

ession; 1 clock cycle when receiver is ready (in same clock
domain)

on) {...}
e {...}

Length of executed branch

while (Expression) {...} Length of loop body * number of iterations

 Length of executed case branch

Timing

Sum of all statements in sequential block

Length of longest branch in block

No clock cycle
continue

return(1 clock cycle i
otherwise none.

iable = Expression; 1 clock cycle

-- Variable; 1 clock cycle

Variable -= Expression; 1 clock cycle

Variable /= Expression; 1

Variable %= Expression; 1 clock cycle

Variable <<= Constant; 1 clock cycle

Variable >>= Constant; 1 clock cycl

Variable &= Ex

Var

Variable ^= Expression;

domain)

Channel ! Expr

if (Expressi
els

do {...} while
(Expression);

Length of loop body * number of iterations

for (Init; Test; Iter)
{...}

Length of Init + (Length of body + length of Iter) *
number of iterations

switch (Expression) {...}

Handel-C Language Reference Manual

www.celoxica.com Page 156

prialt {...} 1 clock cycle for case communication when other party
ranch

or length of default branch if present and no
communication case is ready

or infinite if no default branch and no communication
case is ready

sema(); 1 clock cycle

1 clock cycle

l

is ready plus length of executed case b

release

delay;

 The Handel-C compiler may insert delay statements to break combinationa
loops.

8.2 Avoiding combinational loops

ait for a variable to be modified in a parallel process before continuing,
 write:

3); // WARNING!!

se it generates a combinational loop in the logic (This is
l-C expressions are built to evaluate in zero clock cycles.)

r to see if it is written as

{
til x == 3

pty loop must be broken by changing the code to:

er to execute but does not contain a combinational loop because
lock cycle delay in the loop body.

The Handel-C compiler spots this form of error, inserts the delay statement, and
generates a warning. It is considered better practice to include the delay statement in
the code to make it explicit

Similar problems occur with do ... while loops and switch statements in similar
circumstances. for loops with no iteration step can also cause combinational loops.

If you wish to w
you might

while (x!=

This is bad Handel-C code becau
because of the way that Hande

This is easie

while (x!=3)

 // wait un
}

This em

while (x!=3)
{
 delay;
}

This code ta
of the c

kes no long

Handel-C Language Reference Manual

www.celoxica.com Page 157

Further combinational loop code example

Code may look correct but still include an empty loop. For example:

{

 a++;

ent may take zero clock cycles to execute if y is not greater than z so
is loop body does not look empty a combinational loop is still generated.
ious written as

 else

 // do nothing
 }

tion is to add the else part of the if construct as follows:

ile (x!=3)

 else
 {

}

while (x!=3)

 if (y>z)
 {

 }
}

This if statem
en though thev

This is more obv

while (x!=3)
{
 if (y>z)
 {
 a++;
 }

 {

}

The solu

wh
{
 if (y>z)
 {
 a++;
 }

 delay;
 }

Handel-C Language Reference Manual

www.celoxica.com Page 158

8.3 Parallel access to variables

The rules para lism te that the same variable must not be accessed from two
parate allel anch This avoids resource conflicts on the variables.

e rule m be axed sta hat same variable must not be assigned to more
n once the same ck cy but ay be read as many times as required. This

techniques. For example:

r

waps the values of a and b in a single clock cycle.

ent, the Handel-C compiler cannot
le on the same clock

cycle. You should therefore check your code to ensure that the relaxed rule of parallelism

 int x[3];

 x[0] = in;
 x[1] = x[0];
 x[2] = x[1];
 out = x[2];
 }
}

The value of out is the value of in delayed by 4 clock cycles. On each clock cycle, values
will move one place through the x array. For example:

 of lle sta
se par br es.

Th ay rel to te t the
tha on clo cle m
gives powerful programming

pa
{
 a = b;
 b = a;
}

This code s

Since exact execution time may be run-time depend
determine when two assignments are made to the same variab

is still obeyed.

Example

Using this technique, a four-place queue can be written:

while(1)
{
 par
 {

Handel-C Language Reference Manual

www.celoxica.com Page 159

Clock in x[0] x[1] x[2] out

5 0 0 0 0

0

0 0

6 5

10 9 8 7 6

11 10 9 8 7

12 11 10 9 8

11 10 9

iming example

d example that generates signals tied to real-world constraints. It
a real time clock. The signals required are for

conds, seconds, minutes and hours.

ill eventually be driven from an external clock. In order to
m, the rate of this clock must be known. It has been assumed to be 5

dy takes one clock cycle to execute. The Count variable is used to divide the
second increments. As each variable wraps round to zero,

1

2 6 5 0 0

3 7 6 5

4 8 7 6 5 0

5 9 8 7

6

7

8

9 13 12

8.4 Detailed t

This is an analyze
shows the generation of signals for
microse

The hardware generated w
write the progra
MHz on pin P1.

The loop bo
clock by 5 to generate micro
the next time step up is incremented.

Handel-C Language Reference Manual

www.celoxica.com Page 160

set clock = external "P1";
void main(void)
{
 unsigned 20 Mic
 unsigned 6
 unsigne

roSeconds;
Seconds;

d 6 Minutes;
igned 16 Hours;

 unsigned 3 Count;

 {
 Count = 0;

99999)
 MicroSeconds++;

 MicroSeconds = 0;

 {

 uns

 par
 {
 Count = 0;
 MicroSeconds = 0;
 Seconds = 0;
 Minutes = 0;
 Hours = 0;
 }
 while (1)
 {
 if (Count!=4)
 Count++;
 else
 par

 if (MicroSeconds!=9

 else
 par
 {

 if (Seconds!=59)
 Seconds++;
 else

 par
 {
 Seconds = 0;

 if (Minutes!=59)
 Minutes++;

 else
 par

Handel-C Language Reference Manual

www.celoxica.com Page 161

 }

 }
 }
 }
}

rdware

s that the clock period for a program is longer than the longest path
l logic in the whole program. This means that, for example, once
 route has been completed, the maximum clock rate for the

ted from the reciprocal of the longest path delay in the circuit.

xample, suppose the FPGA place and route tools calculate that the longest path
 between flip-flops in a design is 70ns. The maximum clock rate that that circuit

uld be run at is then 1/70ns = 14.3MHz.

 for the system performance or real time
straints you can optimize your program to reduce the longest path delay and increase

 use the retiming option to try and match

 optimizing efficiency is to use pipelining.

.1 Reducing logic depth

rations in Handel-C combine to produce deep logic. Deep logic results in long
h delays in the final circuit so reducing logic depth should increase clock speed.

Guidelin c depth

on and modulo operators produce the deepest logic. Multiplication also
produces deep logic. A single cycle divide, mod or multiplier produces a large

ount of hardware and long delays through deep logic so you should avoid
wherever possible.

• Most common division and multiplications can be done with the shift
operators. Also consider using a long multiplication with a loop, shift and add

r.

• Wide adders require deep logic for the carry ripple. Consider using more clock
cycles with shorter adders.

• Avoid greater than and less than comparisons - they produce deep logic.

 Minutes = 0;
 Hours++;

 }

8.5 Time efficiency of Handel-C ha

Handel-C require
through combinationa
FPGA or PLD place and
system can be calcula

For e
aydel

sho

If this calculated rate is not fast enough
con
the maximum possible clock rate. You can also
your target clock rate.

One standard technique for

8.5

Certain ope
pat

es for reducing logi

• Divisi

am
using them

routine or a pipelined multiplier.

• Most common modulo operations can be done with the AND operato

Handel-C Language Reference Manual

www.celoxica.com Page 162

• Reduce complex expressions into a number of stages.

• Avoid long strings of empty statements. Empty statements result from, for
example, missing else conditions from if statements.

Adder example

To reduce a single, 8-bit wide adder to 3, narrower adders:

igned 8 x;
 8 y;

gned 5 temp1;
igned 4 temp2;

 temp1 = (0@(x<-4)) + (0@(y<-4));

[3:0];

ced with:

.....
 x++;

 == and != comparisons produce much shallower logic although in some cases it is
comparison altogether. Consider the following code:

uns
unsigned
unsi
uns

par
{

 temp2 = (x \\ 4) + (y \\ 4);
}
x = (temp2+(0@temp1[4])) @ temp1

Comparison example

while (x<y)
{

 x++;
}

can be repla

while (x!=y)
{
 .

}

The
possible to remove the

Handel-C Language Reference Manual

www.celoxica.com Page 163

unsigned 8 x;

+ 1;
 != 0);

erates the loop body 256 times but it can be re-written as follows:

 x = x + 1;

c + d + e + f + g + h;

reduces to:

par
{
 temp1 = a + b;
 temp2 = c + d;
 temp3 = e + f;
 temp4 = g + h;
}
par
{
 temp1 = temp1 + temp2;
 temp3 = temp3 + temp4;
}
x = temp1 + temp3;

This code takes three clocks cycles as opposed to one but each clock cycle is much
shorter and so the rest of the circuit should be speeded up by the faster clock rate
permitted.

x = 0;
do
{

 x = x
} while (x

This code it

unsigned 9 x;

x = 0;
do
{

} while (!x[8]);

By widening x by a single bit and just checking the top bit, we have removed an 8-bit
comparison.

Complex expression example

x = a + b +

Handel-C Language Reference Manual

www.celoxica.com Page 164

Empty statement example

if (a>b)
 x++;
if (b>c)
 x++;
if (c>d)
 x++;
if (d>e)
 x++;

>f)
 x++;

 then all the comparisons must be made in one clock
ents with delays, the long path through all these if

atements can be split at the expense of having each if statement take one clock cycle
dition is true or not.

ing

 rates in hardware is to pipeline. A pipelined circuit takes
ore than one clock cycle to calculate any result but can produce one result every clock

 off is an increased latency for a higher throughput so pipelining is only
 there is a large quantity of data to be processed: it is not practical for single

if (e

If none of these conditions is met
cycle. By filling in the else statem
st
whether the con

8.5.2 Pipelin

A classic way to increase clock
m
cycle. The trade
effective if
calculations.

Handel-C Language Reference Manual

www.celoxica.com Page 165

Pipelined multiplier example

unsigned 8 sum[8];
unsigned 8 a[8];
unsigned 8 b[8];
//ina.dat is a data file. You must provide your own

 while(1)
 inputb ? b[0];

 while(1)
 output ! sum[7];

 while(1)
 {
 par
 {
 macro proc level(x)
 par
 {
 sum[x] = sum[x - 1] +
 ((a[x][0] == 0) ? 0 : b[x]);
 a[x] = a[x - 1] >> 1;
 b[x] = b[x - 1] << 1;
 }

 sum[0] = ((a[0][0] == 0) ? 0 : b[0]);
 par (i=1; i <=7; i++)
 {
 level (i);
 }
 }
 }
}

chanin inputa with {infile = "ina.dat"};
chanin inputb with {infile = "ina.dat"};
chanout output with {outfile = "out.dat"};

par
{
 while(1)
 inputa ? a[0];

Handel-C Language Reference Manual

www.celoxica.com Page 166

This multiplier calculates the 8 LSBs of the re
multiplication. The multiplier produces one resu

sult of an 8-bit by 8-bit multiply using long
lt per clock cycle with a latency of 8 clock

cycles. This means that although any one result takes 8 clock cycles, you get a

n The LSB of the a
value or not. Stages

cle through a[0] and b[0]. Results appear 8 clock

throughput of 1 multiply per clock cycle. Since each pipeline stage is very simple,
combinational logic is shallow and a much higher clock rate is achieved than would be
possible with a complete single cycle multiplier.

At each clock cycle, partial results pass through each stage of the multiplier in the sum
array. Each stage adds on 2 multiplied by the b operand if required.
operand at each stage tells the multiply stage whether to add this
are generated with a macro procedure instantiated several times using a replicator

Operands are fed in on every clock cy
cycles later on every clock cycle through sum[7].

Handel-C Language Reference Manual

www.celoxica.com Page 167

9 Clocks overview

he same
source file, they must all use the same clock.

l clocks) or fed from a pin (external clocks).

using the keyword _ _clock

The general syntax of the clock specification is:

ecify a clock. When generating simulation output, a dummy clock such as
= external "P1";' is valid.

dware, a single clock
s required for each one.

set clock = Location;

Location may be any of the following:

divide

Clock from expression with integer division

external [Pin] Clock from device pin

You can have multiple clocks interfacing with your design. Each main() function must be
associated with a single clock. If you have more than one main function in t

Clocks may be fed from expressions (interna

The current clock may be referred to

You can specify the maximum delay in MHz allowed between components fed from a
clock by using the rate specification.

set clock = Location with {Rate_spec, periodSpec};

If you are communicating between clock domains, you also need to set timing
specifications (resolutiontime or minperiod). These control the synchronization
hardware generated.

You must sp
'set clock

9.1 Locating the clock

Since each Handel-C main() code block generates synchronous har
source i

The general syntax of the clock specification is:

Location Meaning

internal Expression Clock from expression

internal_
Expression Factor

external_divide Clock from device pin with integer division
[Pin] Factor

Handel-C Language Reference Manual

www.celoxica.com Page 168

9.1.1 External clocks

External clocks may be accessed by associating the clock with a specific pin using set
clock external = "pin_Name" or set clock external_divide = "pin_Name" factor,
where the external_divide keyword is a constant integer. For example:

set clock = external "P35";
= external_divide "P35" 3;

ctor of 3. The third

 the place and route tools will choose an appropriate
n. Omitting pin specifications can speed up the clock rate of the design.

external clock. If the clock is associated
with a specific pin, you can use the interface sort bus_in. You would only need to do

bus_in(unsigned 1 in with {clockport=1})

set clock = external_divide "Pin1" 4;

You ca

Expression>;

set ock

The clock d ified with the internal_divide keyword must be a constant
integer.

xample

This allows you to set the clock to a value read from an interface.

t();

set clock
set clock = external_divide 3;

The first of these examples specifies a clock taken from pin P35. The second specifies a
clock taken from pin P35 which is divided on the FPGA/PLD by a fa
option shows a clock divided by 3 with no pin number specified.

When the pin number is omitted,
pi

You can also define an interface that reads an

this if the external clock has been divided, otherwise you can use the intrinsic __clock.

Example

interface
 InputBus() with {data={"Pin1"}};

n now use InputBus.in to get an undivided external clock.

9.1.2 Internal clocks fed from expressions

You can set the clock to be any expression or any expression divided by a given factor.

set clock = internal <

 cl = internal_divide <Expression> factor;

ivision factor spec

E

interface port_in(unsigned 1 clk with {clockport = 1}) ClockPor
set clock = internal ClockPort.clk;

Handel-C Language Reference Manual

www.celoxica.com Page 169

9.2 Current clock

The current clock used by a function can be referenced using the keyword __clock. This
allows the function to pass the current clock to an external interface. The value of th
system variable __clock will be the value after any divide. The clock may be an internal
or an external clock.

e

The code below shows the assignment of the current clock to a port in an interface.

int
 unsigned data=data_in, unsigned 1 clk = __clock,
 unsigned out = write);

ltiple clock domains

ore than one
ile, they

clock

• using channels with time constraints set on the clock

•

Variables,
another.

Communicating between clock domains means that you need to consider metastability

Example

erface reg32x1k() registers(unsigned addr=address,

9.3 Mu

You can have multiple clock domains in your Handel-C design by declaring m
main() function. If you have more than one main() function in the same source f
must all use the same clock. The clock is defined in each file using the set
construct.

You can communicate between clock domains by:

using a defined custom interface. You cannot use multiple clock domains
within the pre-defined Handel-C interface sorts.

signals and functions cannot be written to by one clock domain and read in

issues.

 If you reset one clock domain without synchronously resetting any clock
domains that it communicates with, the communicating channels will go to an
undefined state.

9.3.1 Channels communicating between clock domains

Channels that connect between clock domains can only be written to in a single domain
and read from in a single domain. Their first use defines their direction and the domains

Handel-C Language Reference Manual

www.celoxica.com Page 170

in which they transmit and receive. If you attempt to re-use the channel in a different

st be defined in one file and then declared as
tern in another.

specified, but the transmission is guaranteed to occur
ovided metastability is resolved. If fifolength is 0, both sides will wait until the

 to complete. Otherwise, the channel will write as soon as the FIFO
 space) and read as soon as the FIFO is ready (and isn't empty).

ou use channels to communicate between clock domains you must specify the rate
 for both clocks.

 Most cases will be dealt with by setting the resolution time to three-quarters

direction or to or from a different clock domain, the compiler generates an error.

Channels used between clock domains mu
ex

The timing between domains is un
pr
transmission is certain
is ready (and has

If y
and the resolutiontime

of the clock period.

Example

al "A22" with {rate=100, resolutiontime=7.5};
ote that the rate is in MHz and the resolutiontime is in nanoseconds.

adjust the channel timing due to latency issues, you may do so by
usting the resolutiontime and the number of flip-flops used to prevent metastability

agated through the circuit.

 If the resolution time is set incorrectly then intermittent failures due to

For a 10ns clock

set clock = extern
N

If you need to
adj
being prop

metastability may cause the generated hardware to be unreliable. You must
test channels communicating between clock domains extremely thoroughly
(unless you know that resolutiontime is sufficiently long to guarantee an
acceptable probability of failure).

Timing issues for channels communicating between clock domains

The timing of channels across clock domains is unspecified. The values read into i and j
may differ in the example below, as the reads may not complete on the same clock cycle.

Handel-C Language Reference Manual

www.celoxica.com Page 171

Domain 1:

eriod=2.0,
strainedperiod=9, rate=101 };

le (1) par

h1 ! i;

rnal with { minperiod=2.0, unconstrainedperiod=10, rate=100

chan ch1, ch2;

unsigned 8 i, j;

 {
 ch1 ? j;

ample
mple uses a channel to communicate between two clock domains. One clock

half the speed of the other.

set clock = external with { paranoia=1, minp
uncon

chan <unsigned 8> ch1, ch2;

unsigned 8 i = 0;
whi
{
 while (1) i ++;
 c
 ch2 ! i;
}

Domain 2:

set clock = exte
}

extern

while (1)
{
 par

 ch2 ? i;
 }
}

Channe
This exa

l communication ex

domain runs at

Handel-C Language Reference Manual

www.celoxica.com Page 172

/*
 * File: receive.hcc: primary clock domain

olutiontime = 7.5 };
;

erface bus_out() O(unsigned o = result) with {warn = 0};

unsigned 4 ReturnData;

d main(void)

 {

 will wait until data received
 ReturnData ? result;

 * running at half the speed of the primary one
*/

set clock = external_divide "R25" 2;

scope

void m n
{
 st i

 while
 {
 x++;
 ReturnData ! x;
 }
}

 */

set clock = external "A22" with { rate=100, res
unsigned 4 result
int

//channel defined in other file
extern chan

voi
{
 while(1)

 delay;
 //program

 }
}

/*
 * File: transmit.hcc:secondary clock domain,

chan unsigned 4 ReturnData; //channel must have global

ai (void)

at c unsigned 4 x;

(1)

Handel-C Language Reference Manual

www.celoxica.com Page 173

Examp :
//File: t
chan 8 c ; // channel must have global scope

set clock = external "P1" with (paranoia =2);
void main(void)
{
 int 8 x, y;
 c ! x; //program will wait until data successfully transmitted
 c ! y;
}

//File: receive.hcc
extern chan c;

t clock
id main

 c ? q;

• the number of flip-flops used to resolve metastability (this is set by the
paranoia specification, defaulting to 1)

• the value of resolutiontime (how long it is before you sample a signal

le channels between clock domains
ransmit.hcc

se = external "P2";
vo (void)
{
 int 8 p, q;

 c ? p;

}

Managing channel timing

The timing of channels between clock domains is controlled by:

OR

the value of minperiod (how long is available before the signal is moved on)

Handel-C Language Reference Manual

www.celoxica.com Page 174

• the value of unconstrainedperiod. This is the timing constraint on the
compiler generated synchronizing control paths.

tr time to transfer between domains (paranoia in domain B + 1) X tp

tp clock period in domain B

tup unconstrainedperiod

 minperiod

set clock = external "C43" with {rate = 40, resolutiontime = 20};
This gives a clock period of 25ns. It assumes that 20ns is required for the control signal
to stabilize, leaving 5ns for it to be routed onwards.

tmp

Using clock specifications to manage timing between clock domains
You can use clock specifications to specify the timing of the synchronization hardware.
Set the values on a clock to affect the timing of ALL channels to and from that domain.

RESOLU N IN ONE CLOCK TICK TIO TIME AND PROPAGATION TIME

Handel-C Language Reference Manual

www.celoxica.com Page 175

If it takes longer for the data to stabilize, you can increase the number of flip-flops used
paranoia specification. In this case, the stabilization
utiontime / paranoia)

If paranoia e
value of re alue for data to be routed on.

to stabilize the data by setting the
time in each clock period is (resol

 is set to 3, then the resolution time required in each clock tick is 1/3 th
solutiontime, giving a larger possible v

Speed versus metastability
When you increase the paranoia specification on the clock domains, you increase the

ps used to give the synchronization data time to stabilize. The higher

latency of channels into the domain. The value of the paranoia specification sets the
number of flip-flo
the value of paranoia, the more stable the data and the greater the latency.

Handel-C Language Reference Manual

www.celoxica.com Page 176

Setting paranoia to 0 to decrease latency
If you know there is not going to be a metastability problem (e.g, the clock domains you
are working with have a low clock rate or are synchronous with each other), you may
choose to set paranoia to 0. In this case, you must use the minperiod constraint rather
than the resolutiontime constraint.

t r

pa
 time t er bet domains (clock period in domain B when

ranoia = 0

up unconstrainedperiod

tmp minperiod

Latency between clock domains
The latency of channels between clock domains is unpredictable. It is dependent on:

• the value of resolutiontime

• the value of paranoia

• the value of unconstrainedperiod

For FIFOs whose size is an exact power of two, latency is higher.

In addition, it may be affected by

• the way a channel has been implemented in hardware the sequence of
communications sent across the channel

• the number of clock cycles elapsed since power-up

• environmental factors such as temperature and supply voltage

• the individual FPGA

Program your code so it can deal with variable latency. It is unsafe to rely on a particular
observed latency, either in hardware or in simulation.

o transf ween
)

t

Handel-C Language Reference Manual

www.celoxica.com Page 177

 Do not make assumptions about the latency of cross clock-domain channels

The effect of constraining unconstrained paths
Unconstrained paths are created in the synchronization hardware used to connect
channels across clock domains.

set clock = external "C43" with {rate = 40, unconstrainedperiod = 100,
minperiod=5};
unconstrainedperiod can be given a value to stop place and route tools giving an
unconstrained period warning. If latency is critical in your design, note that as the value
of unconstrainedperiod increases, latency may increase.

Throughput between clock domains using channels

To ensure a throughput of one word per cycle between clock domains, you need to have
a sufficiently large FIFO.

The table below shows the average clock cycles needed to send 1000 words from one
clock domain to another of a similar frequency and back again. It was measured in the
originating domain using timing accurate simulation of a back-annotated netlist.

Handel-C Language Reference Manual

www.celoxica.com Page 178

paranoia fifolength

0 1 2

0 5008 7010 9011

1 5008 7010 9011

2 3009 5011 7012

3 1341 2010 5013

4 1808 2513 4013

5 1510 2155 3215

6 1343 1888 2731

7 1008 1010 2389

8 1102 1443 2269

9 1012 1348 1926

10 1012 1265 1771

11 1012 1192 1634

12 1012 1128 1521

13 1012 1070 1422

14 1012 1010 1354

15 1008 1010 1304

16 1012 1018 1239

17 1012 1018 1188

18 1012 1018 1142

19 1012 1018 1060

20 1012 1018 1060
This demonstrates that timing between different clock domains cannot be predicted
accurately. FIFOs with a length of a power of 2 are slower. Other differences may be
accounted for by layout.

It will not vary widely over different devices and different clock rates.

Synchronization between clock domains

 zero-width channel to convey synchronization information between clock
 width channel will create the synchronization hardware,

such that subsequent statements will be synchronized.

For example, if you have two statements in different clock domains and you want one to
execute if and only if the other one does then you can do something like:

Domain 1:

You may use a
domains. Sending 0 along a 0

Handel-C Language Reference Manual

www.celoxica.com Page 179

chan unsigned 0 ch;

main 2:

extern chan ch;
unsigned 0 junk;
ch?junk;
<statement 2>

In this example, each domain will wait for the other before statement 1 and statement 2
are executed

Using interfaces to communicate between clock domains

If you are using interfaces rather than channels to communicate between hardware
components in separate clock domains, you will need to insert resynchronizing hardware
if it is not included in the components. For example, if data is sent from port_out A in
domain bbA and received from port_in B in domain bbB, the data must be
resynchronized to the clock in domain bbB.

Using interfaces: External resynchronizing example
This example shows the three files required to connect two EDIF blocks (bbA and bbB)
which use different clocks. The small files bbA.hcc and bbB.hcc compile to the EDIF code
using the port_out from and port_in to interfaces. The metastable.hcc file connects
the two together and generates one flip –flop that resynchronizes the data by reading the
value from bbA into a variable.

ch!0;
<statement 1>

Do

File: metastable.hcc

Handel-C Language Reference Manual

www.celoxica.com Page 180

/*
* Black box code to resynchronize
* Needs to be clocked from the reading clock
* (i.e. bbB.hcc's clock)
*/

int 1 x;
interface bbA(int 1 from) A();
interface bbB() B(int 1 to=x, unsigned 1 clk = __clock);

set clock = external "P1";
void main(void)
{
 while(1)
 {
 /*
 * stabilize the data by adding resynchronization FF
 */
 x = A.from;
 }
}

File: bbA.hcc

/*
* Domain bbA
* Compiles to bbA.edf
*/
interface port_in(unsigned 1 clk with { clockport = 1 }) clk();
set clock = internal clk.clk;
void main(void)
{
 int 1 y;
 interface port_out() from (int 1 from = y);
}

File: bbB.hcc

Handel-C Language Reference Manual

www.celoxica.com Page 181

/*
*Domain bbB
* Compiles to bbB.edf
*/

set clock = external "P2";
void main(void)
{
 int 1 q;

 interface port_in(int 1 to) to();
 par
 {
 while(1)
 {
 q = to.to; // Read data
 }
 }
}

Internal resynchronizing example
The resynchronizing flip-flop can be placed in the file that reads the data from the foreign
code block.

This example shows the three files required to connect two EDIF blocks (bbA and bbB)
which use different clocks. The small files bbA.hcc and bbB.hcc compile to the EDIF code
using the port_out from and port_in to interfaces. The toplevel.hcc file connects
them together. The data is resynchronized in the bbB.hcc file.

File: toplevel.hcc

Handel-C Language Reference Manual

www.celoxica.com Page 182

/*
* Code to connect data between two cores
*/

interface bbA(int 1 from) A();
interface bbB() B(int 1 to=A.from);

File: bbA.hcc

/*
* Domain bbA
* Compiles to bbA.edf
*/
set clock = external "P1";
void main(void)
{
 int 1 y;
 interface port_out() from (int 1 from = y);
}

File: bbB.hcc

/*
*Domain bbB
* Complies to bbB.edf
*/

set clock = external "P2";
void main(void)
{
 int 1 q, y;

 interface port_in(int 1 to) to();
 while(1)
 {
 par
 {
 q = to.to; // Resynchronize data
 y = q;
 }
 }
}

Handel-C Language Reference Manual

www.celoxica.com Page 183

9.3.2 Simulating multiple clock domains

You may simulate your design by

• using the DK simulator

• untimed simulation of generated VHDL code

• simulation of back-annotated netlist

Note that as the timing accuracy of the simulation increases, it is harder to relate errors
to the original Handel-C code.

Using the DK simulator

 The DK simulator may not simulate the timing of channels between clock
domains identically to that in the generated hardware. You must not rely on
observed latency or timing behaviour in either simulation or hardware.

When you simulate designs with multiple clocks, you will get a Select Clock dialog in the
GUI asking you which clock you want to follow. If you want to synchronize the clocks in a
simulation, use the DKSync.dll plugin.

Handel-C Language Reference Manual

www.celoxica.com Page 184

10 Targeting hardware and simulation

10.1 Interfacing with the simulator

Communication with the simulator takes place over channels. They are declared using
the keywords chanin and chanout. Standard channel communication statements can
then be used to transfer data. It is assumed that channels to and from the simulator
never block and will always complete a transfer in one clock cycle.

 Channels to and from the simulator are declared using chanin and chanout
instead of chan.

The special channels chanin and chanout are normally connected to files. Only integer
values can be used as input data, and files connected to chanin must be correctly
formatted. An unconnected channel that outputs data to the simulator will be displayed
in the debug window. You can declare multiple channels for input and output and connect
more than one channel to the same file, but you cannot read from the same channel
more than once in a clock cycle. If the simulation is still running when the end of the file
has been reached, the simulator will read in zeroes.

You cannot use chanin or chanout in a struct. Use pointers to chanin or chanout
instead.

Simple example

chanin unsigned Input with {infile = "../Data/source.dat"};
chanout unsigned Output;

input ? x;
output ! y;

This example declares two channels: one for input from the simulator and one for output
to the simulator. The input channel connects to a file managed by the simulator; the
output channel connects to the simulator's standard output (the debug window in the DK
GUI).

Handel-C Language Reference Manual

www.celoxica.com Page 185

Multiple channel example

chanin int 8 input_1 with
 {infile = "../Data/source_1.dat"};
chanin int 16 input_2 with
 {infile = "../Data/source_2.dat"};
chanout unsigned 3 output_1;
chanout char output_2;

int 8 a;
int 16 b;

input_1 ? a;
input_2 ? b;
output_1 ! (unsigned 3)(((0 @ a) + b) <- 3);
output_2 ! a;

When simulated, such a program displays the name of channels before outputting their
value on the simulating computer screen.

10.1.1 Simulator input file format

The data input file should have one number per line separated by newline characters
(either DOS or UNIX format text files may be used). Each number may be in any format
normally used for constants by Handel-C. You can only use integer values. Blank lines
are ignored as are lines prefixed by // (comments). For example:

56
0x34
0654
0b001001

//is a comment, blank lines ignored
27

If EOF file is reached while reading an input file, zeroes will be read in until the simulation
completes.

10.1.2 Block data transfers

The Handel-C simulator has the ability to read data from a file and write results to
another file. For example:

Handel-C Language Reference Manual

www.celoxica.com Page 186

chanin int 16 input with {infile = "in.dat"};
chanout int 16 output with {outfile = "out.dat"};

void main (void)
{
 while (1)
 {
 int value;

 input ? value;
 output ! value+1;
 }
}

This program reads data from the file in.dat and writes its results to the file out.dat.
The simulator will open and close the specified files for reading or writing as appropriate.
If EOF file is reached while reading an infile file, zeroes will be read in until the
simulation completes.

If the in.dat file consists of:

56
0x34
0654
0b001001

the out.dat will contain the decimal results as follows:

57
53
429
10

The base specification can be used to write to the outfile in different formats.

Block data transfers allow algorithms to be debugged and tested without needing to build
actual hardware. For example, an image processing application may store a source
image in a file and place its results in a second file. All that need be done outside the
Handel-C compiler is a conversion from the image (e.g. JPEG file) into the text file (which
can then be used by the simulator) and a conversion back from the output file to the
image format. The results can then be viewed and the correct operation of the Handel-C
program confirmed.

10.2 Targeting FPGA and PLD devices

The Handel-C language is designed to target real hardware devices. To do this, you must
supply this information to the compiler:

Handel-C Language Reference Manual

www.celoxica.com Page 187

• the FPGA/PLD family and part that the design will be implemented in
These are supplied on the Chip tab of the Project>Settings dialog. They can also
be specified in the source code using the set family and set part
statements or they can be supplied to the command line using the -f family
and -p part switches. They will be passed to the FPGA/PLD place and route
tool to inform it of the device it should target.

• in some cases, the location of a reset source (required for Actel devices)
The reset source is specified using the set reset command.

 Your license may restrict the devices you can target. The devices available to
you are listed in the Family box on the Chip tab in Project Settings.

10.2.1 Summary of supported devices

In order to target a specific FPGA or PLD, the compiler must be supplied with the part
number. Ultimately, this information is passed to the place and route tool to inform it of
the device it should target.

You can specify your target device using the Chip tab on the Project Settings dialog, or
within your source code.Your license may restrict the devices you can target. The devices
available to you are visible in the Family list on the Chip tab.

Recognized families are:

Description On-chip
asynchronous
RAMs

On-chip synchronous
RAMs

Actel ProASIC series
FPGAs

Block RAM, dual-
port

Block RAM, dual-port

Handel-C Language Reference Manual

www.celoxica.com Page 188

Actel ProASIC+ series
FPGAs

Block RAM, dual-
port

Block RAM, dual-port

Altera Apex 20K series
PLDs

Block RAM (in
ESBs), dual-port

Block RAM (in ESBs),
dual-port

Altera Apex 20KE
series PLDs

Block RAM (in
ESBs), dual port

Block RAM (in ESBs),
dual port

Altera Apex 20KC
series PLDs

Block RAM (in
ESBs), dual port

Block RAM (in ESBs),
dual port

Altera ApexII series
PLDs

Block RAM (in
ESBs), dual-port

Block RAM (in ESBs),
dual-port

Altera Cyclone PLDs - M4K dual port RAM

Altera Cyclone II PLDs - M4K dual port RAM

Altera Excalibur ARM
series PLDs

Block RAM (in
ESBs), dual-port

Block RAM (in ESBs),
dual-port

Altera Flex10K series
PLDs

Block RAM (in
EABs), dual-port

Block RAM (in EABs),
dual-port

Altera Flex10KA series
PLDs

Block RAM (in
EABs), dual-port

Block RAM (in EABs),
dual-port

Altera Flex10KB series
PLDs

Block RAM (in
EABs), dual-port

Block RAM (in EABs),
dual-port

Altera Flex10KE series
PLDs

Block RAM (in
EABs), dual-port

Block RAM (in EABs),
dual-port

Altera Mercury series
ASSPs

Block RAM (in
ESBs), dual-port,
quad-port

Block RAM (in ESBs),
dual-port, quad-port

Altera Stratix PLDs - 3 types of dual-port RAM
in TriMatrix blocks

Altera Stratix GX PLDs - 3 types of dual-port RAM
in TriMatrix blocks

Altera Stratix II PLDs - 3 types of dual-port RAM
in TriMatrix blocks

Xilinx Spartan series
FPGAs

SelectRAM, dual-
port

-

Xilinx Spartan-XL
series FPGAs

SelectRAM, dual-
port

-

Xilinx Spartan-II series
FPGAs

SelectRAM, dual-
port

Block RAM

Xilinx Spartan-IIE
series FPGAs

SelectRAM, dual-
port

Block RAM, dual-port

Handel-C Language Reference Manual

www.celoxica.com Page 189

Xilinx Spartan-3 series
FPGAs

SelectRAM, dual-
port

Block RAM, dual-port

Xilinx Spartan-3E
series FPGAs

SelectRAM, dual-
port

Block RAM, dual-port

Xilinx Spartan-3L
series FPGAs

SelectRAM, dual-
port

Block RAM, dual-port

Xilinx Virtex series
FPGAs

SelectRAM, dual-
port

Block RAM, dual-port

Xilinx VirtexE series
FPGAs

SelectRAM, dual-
port

Block RAM, dual-port

Xilinx Virtex-II series
FPGAs

SelectRAM, dual-
port

Block RAM, dual-port

Xilinx Virtex-II Pro
series FPGAs

SelectRAM, dual-
port

Block RAM, dual-port

Xilinx Virtex-II Pro X
series FPGAs

SelectRAM, dual-
port

Block RAM, dual-port

Xilinx Virtex-4 series
FPGAs

SelectRAM, dual-
port

Block RAM, dual-port

"Generic" (VHDL or
Verilog projects only.
Results in HDL without
target-specific
constructs.)

- -

10.2.2 Detecting the current device family

The __isfamily construct allows you to detect what the current device family is. If you
are writing platform-independent libraries, you can use this to conditionally select pieces
of the source code to exploit the resources available on different FPGAs.

The construct takes a device string and returns true or false. The possible device names
are the same as those used to specify devices with the set family construct. An error is
returned if the string specified inside the construct is not a recognized family string.

Handel-C Language Reference Manual

www.celoxica.com Page 190

Example

set family = XilinxVirtex;

macro expr DoThis() =
 select (__isfamily(XilinxVirtex) : DoThing1() :
 select (__isfamily(AlteraApex20K) : DoThing2() :
 select (__isfamily(MadeUpDevice) : DoThing3() : DoThing4())
)
);

The first use of __isfamily() would return true, the second would return false, and the
third would result in a compiler error. The source code specified in the DoThing1()
function would be selected.

10.2.3 Targeting specific devices via source code

If you are not using the GUI or the command line to specify the target device, you must
insert lines in the code to specify it. In order to target a specific FPGA or PLD, the
compiler must be supplied with the FPGA part number. Ultimately, this information is
passed to the FPGA/PLD place and route tool to inform it of the device it should target.

Targeting devices is in two parts: specifying the target family and the target device. The
general syntax is:

set family = Family;
set part = Chip Number;

Recognized families are:

Handel-C Language Reference Manual

www.celoxica.com Page 191

Family name Description

Actel500K Actel ProASIC series FPGAs

ActelPA Actel ProASIC+ series FPGAs

AlteraFlex10K Flex10K series Altera PLDs

AlteraFlex10KA Flex10KA series Altera PLDs

AlteraFlex10KB Flex10KB series Altera PLDs

AlteraFlex10KE Flex10KE series Altera PLDs

AlteraApex20K Apex 20K series Altera PLDs

AlteraApex20KE Apex 20KE series Altera PLDs

AlteraApex20KC Apex 20KC series Altera PLDs

AlteraApexII Apex II series PLDs

AlteraMercury Altera Mercury series PLDs

AlteraStratix Altera Stratix PLDs

AlteraStratixII Altera Stratix II PLDs

AlteraStratixGX Altera Stratix GX PLDs

AlteraCyclone Altera Cyclone PLDs

AlteraCycloneII Altera Cyclone II PLDs

AlteraExcaliburARM Altera Excalibur ARM series PLDs

Handel-C Language Reference Manual

www.celoxica.com Page 192

XilinxVirtex Virtex Xilinx FPGAs

XilinxVirtexE VirtexE Xilinx FPGAs

XilinxVirtexII Virtex-II Xilinx FPGAs

XilinxVirtexIIPro Virtex-II Pro Xilinx FPGAs

XilinxVirtexIIProX Virtex-II Pro X Xilinx FPGAs

XilinxVirtex4 Virtex-4 Xilinx FPGAs

XilinxSpartan Spartan Xilinx FPGAs

XilinxSpartanXL Spartan-XL Xilinx FPGAs

XilinxSpartanII Spartan-II Xilinx FPGAs

XilinxSpartanIIE Spartan-IIE Xilinx FPGAs

XilinxSpartan3 Spartan-3 Xilinx FPGAs

XilinxSpartan3E Spartan-3E Xilinx FPGAs

XilinxSpartan3L Spartan-3L Xilinx FPGAs

 Your license may restrict the devices you can target. The devices available to
you are visible in the Family list on the Chip tab in Project Settings.

The part string is the complete Actel, Altera or Xilinx device string. For example:

set family = XilinxVirtex;
set part = "V1000BG560-4";

This instructs the compiler to target a v1000 device in a BG560 package. It also specifies
that the device is a -4 speed grade. This last piece of information is required for the
timing analysis of your design by the Xilinx tools.

The family is used to inform the compiler of which special blocks it may generate.

To target Altera Flex 10K devices:

set family = AlteraFlex10K;
set part = "EPF10K20RC240-3";

This instructs the compiler to target an Altera Flex 10K20 device in a RC240 package. It
also specifies that the device is a -3 speed grade. This last piece of information is
required for the timing analysis of your design by the Altera Max Plus II or Quartus tools.
Note that when performing place and route on the resulting design, the device and
package must also be selected via the menus in the Max Plus II or Quartus software.

To target Actel ProASIC devices:

set family = Actel500K;
set part = "A500K270-BG456I";

Handel-C Language Reference Manual

www.celoxica.com Page 193

This instructs the compiler to target an Actel ProASIC device with 270,000 gates in a
BG456 package. It also specifies that the device is a standard speed grade, and that the
device is to be used for an industrial application: the "I" at the end of the part string
specifies that the device is to conform to industrial temperature range standards. The
speed information is required for the timing analysis of your design by the Actel Designer
tools. The application information ("industrial" in this example) is required for place and
route of your design by the Actel Designer tools. Note that when performing place and
route on the resulting design, the device and package must also be selected via the
menus in the Designer software.

10.2.4 Specifying a global reset

set reset allows you to reset your device into a known state at any time. It is
particularly useful for setting up devices which are not in a known state at start up.

set reset causes the program to return to its initial state and resets global and static
variables to their initial values. However, it does not reset any RAMs (distributed or
block). By default, the reset is asynchronous and thus occurs immediately (it does not
wait for the next clock tick.) To make the global reset synchronous, use the synchronous
specification.

Examples

signal unsigned 1 x;
set reset = internal !x; // resets when x is zero

set reset = external "P1"; // resets when signal sent to named pin

set reset = external; // connects to pin, but doesn't specify which

10.3 Use of RAMs and ROMs with Handel-C

Handel-C provides support for:

• interfacing to on-chip and off-chip RAMs and ROMs using the ram and rom
keywords.

• specifying RAMs and ROMs external to the Handel-C code by using the ports
specification keyword.

• controlling the timing for read/write cycles by using specification keywords
that define the relationship between the RAM strobe and the Handel-C clock.

The usual technique for specifying timing in synchronous and asynchronous RAM is to
have a fast external clock which is divided down to provide the Handel-C clock and used
directly to provide the pulses to the RAM.

Handel-C Language Reference Manual

www.celoxica.com Page 194

10.3.1 Asynchronous RAMs

There are three techniques for timing asynchronous RAMs, depending on the clock
available

• Fast external clock. Use the Handel-C westart and welength specifications to
position the write strobe.

• External clock at the same speed as the Handel-C clock. Use multiple reads to
give the RAM enough time to respond.

thin the

ock that is
 or

external_divide with a division factor greater than 1). If so, Handel-C can generate a
write strobe for the RAM which is positioned within the Handel-C clock cycle. This is done
with the westart and welength specifications. For example:

set clock = external_divide "P78" 4;
ram unsigned 6 x[34] with { westart = 2,
 welength = 1 };

The write strobe can be positioned relative to the Handel-C clock cycle by half cycle
lengths of the external (undivided) clock. The above example starts the pulse 2 whole
external clock cycles into the Handel-C clock cycle and gives it a duration of 1 external
clock cycle. Since the external clock is divided by a factor of 4, this is equivalent to a
strobe that starts half way through the internal clock cycle and has a duration of one
quarter of the internal clock cycle. This signal is shown below:

• Use the wegate specification to position the write enable signal wi
Handel-C clock.

Fast external clock

This method of timing asynchronous RAMs depends on having an external cl
faster than the internal clock (i.e. the location of the clock is internal_divide

TIMING DIAGRAM: POSITIONED WRITE STROBE

This timing allows half a clock cycle for the RAM set-up time on the address and data
lines and one quarter of a clock cycle for the RAM hold times. This is the recommended
way to access asynchronous RAMs.

Handel-C Language Reference Manual

www.celoxica.com Page 195

Fast external clock example

 "P17", "P18", "P19", "P20",

To declare a 16Kbyte by 8-bit RAM:

set clock = external_divide "P99" 4;

ram unsigned 8 ExtRAM[16384] with {
 offchip = 1,
 westart = 2,
 welength = 1,
 data = {"P1", "P2", "P3", "P4",
 "P5", "P6", "P7", "P8"},
 addr = {"P9", "P10", "P11", "P12",
 "P13", "P14", "P15", "P16",

 "P21", "P22"},
 we = {"P23"},
 oe = {"P24"},
 cs = {"P25"}};

The compiled hardware generates the following cycle for a write to external RAM:

Handel-C Language Reference Manual

www.celoxica.com Page 196

The compiled hardware generates the following cycle for a read from external RAM:

Same rate external clock

This method of timing asynchronous RAMs uses multiple Handel-C RAM accesses to meet
the setup and hold times of the RAM.

ram unsigned 6 x[34];

Dummy = x[3];
x[3] = Data;

Dummy = x[3];

This code holds the address constant around the RAM write cycle, enabling a write to an
asynchronous RAM.

Handel-C Language Reference Manual

www.celoxica.com Page 197

The timing diagram below shows the address being held constant during the write strobe.
It is held constant by the two assignments to Dummy.

Undivided external clock

This method of accessing asynchronous RAMs is a compromise between the othe
methods (fast external clock and multiple RAM accesses). is used with an

r two
wegate

undivided external clock and keeps the write strobe in the first or second half of the clock

-1 to put
 RAM

The wegate specification may be used when a divided clock is not available. For
example, to declare a 16Kbyte by 8-bit RAM:

cycle. It is still necessary to hold the address constant either in the clock cycle before or
in the clock cycle after the access. For example:

ram unsigned 6 x[34] with { wegate = 1 };

x[3] = Data;
Dummy = x[3];

This places the write strobe in the second half of the clock cycle (use a value of
it in the first half) and holds the address for the clock cycle after the write. The
therefore has half a clock cycle of set-up time and one clock cycle of hold time on its
address lines.

wegate example

Handel-C Language Reference Manual

www.celoxica.com Page 198

ram unsigned 8 ExtRAM[16384] with {
 offchip = 1,
 wegate = 1,
 data = {"P1", "P2", "P3", "P4",
 "P5", "P6", "P7", "P8"},
 addr = {"P9", "P10", "P11", "P12",
 "P13", "P14", "P15", "P16",
 "P17", "P18", "P19", "P20",
 "P21", "P22"},
 we = {"P23"},
 oe = {"P24"},
 cs = {"P25"}};

The compiled hardware generates the following cycle for a write to external RAM:

The compiled hardware generates the following cycle for a read from external RAM:

Note that the timing diagram above may violate the hold time for some asynchronous
RAM devices. If the delay between rising clock edge and rising write enable is longer than
the delay between rising clock edge and the change in data or address then corruption in

Handel-C Language Reference Manual

www.celoxica.com Page 199

the write may occur in these devices. The two cycle access does not solve the problem
since it is not possible to hold the data lines constant beyond the end of the clock cycle.
If this causes a problem then a multiplied external clock must be used as described
above.

 Using the wegate specification may violate the hold time for some
asynchronous RAM devices.

Targeting external asynchronous RAMs

Handel-C provides support for accessing off-chip static RAMs in the same way as
access internal RAMs. The syntax for an external RAM declaration is:

ram Type Name[Size] with {
 offchip = 1,
 data = Pins,
 addr = Pins,

 you

 we = Pins,

 we = {"P23"},
 oe = {"P24"},
 cs = {"P25"}};

Note that the lists of address and data pins are in the order of most significant to least
significant. It is possible for the compiler to infer the width of the RAM (8 bits in this
example) and the number of address lines used (14 in this example) from the RAM’s
usage. This is not recommended since this declaration deals with real external hardware
which has a fixed definition.

Accessing RAM

Accessing the RAM is the same as for accessing internal RAM. For example:

 oe = Pins,
 cs = Pins};

To declare a 16Kbyte by 8-bit RAM:

ram unsigned 8 ExtRAM[16384] with {
 offchip = 1,
 data = {"P1", "P2", "P3", "P4",
 "P5", "P6", "P7", "P8"},
 addr = {"P9", "P10", "P11", "P12",
 "P13", "P14", "P15", "P16",
 "P17", "P18", "P19", "P20",
 "P21", "P22"},

Handel-C Language Reference Manual

www.celoxica.com Page 200

ExtRAM[1234] = 23;
y = ExtRAM[5678];

Similar restrictions apply as with internal RAM - only one access may be made to the
RAM in any one clock cycle.

The compiled hardware generates the following cycle for a write to external RAM:

The compiled hardware generates the following cycle for a read from external RAM:

This cycle may not be suitable for the RAM device in use. In particular, asynchronous
static RAM may not work with the above cycle due to set-up and hold timing violations.
For this reason, the westart, welength and wegate specifications may also be used with
external RAM declarations.

10.3.2 Synchronous RAMs

SSRAM clocks

Handel-C timing semantics require that any assignment takes one clock cycle. Typically,
SSRAMs have a latency of at least one clock cycle. Therefore, in order for accesses to a

Handel-C Language Reference Manual

www.celoxica.com Page 201

SSRAM device to conform to Handel-C's one-clock-cycle-per-assignment rule, the SSRAM
clock needs to be offset from the Handel-C clock. If the SSRAM has a latency of more
than one clock cycle, its clock needs to be faster than the Handel-C clock, as well as
being offset from it.

This is done by using an independent fast clock (RAMCLK) to match the SSRAM timings
with the Handel-C timing constraints.

A fast external clock (CLK) is divided to provide the Handel-C clock (HCLK), and is also
used to gen
single HCLK cycle. T
SSRAM using

By default, clock to drive
synchronou gn at a lower
clock freque by:

•
il nd
the Pipelined on-chip SSRAM timing diagrams (see page 205).

• using the clock position specifications to alter the position of the RAM clock
relative to the Handel-C clock, to enable full memory accesses to be
performed within 1 Handel-C clock cycle. For example, you might want to
advance the write-clock, or delay the read-clock.

This is most suitable for off-chip RAMs, and is illustrated by the Flow-through
SSRAM example (see page 212) and the Pipelining off-chip SSRAM
example (see page 214).

SSRAM devices supported

Handel-C supports ZBT-compatible (Zero Bus Turnaround) flow-through and pipelined
output devices. DDR (double data rate) and QDR (quad data rate) devices are not
supported directly; you can write your own interfaces.

SSRAM write-enable

The Handel-C compiler checks the block and offchip specifications to find out what type
of RAM is being built and generates the appropriate write-enable signal (e.g. active low
for ZBT SSRAM devices and active-high for block RAMs within Xilinx Virtex chips).

erate pulses to clock the SSRAM, where the pulses can be placed within a
his placed clock is the RAMCLK. It can be carried to an external

the clk specification.

the Handel-C compiler uses an inverted copy of the Handel-C
s on-chip memories. This may mean you need to run your desi
ncy than you want to. You can increase the efficiency of your design

using pipelined memory accesses, for certain on-chip SSRAMs. This is
lustrated by the Pipelined on-chip SSRAM examples (see page 207), a

Handel-C Language Reference Manual

www.celoxica.com Page 202

SSRAM read and write cycles

The inputs to most inputs to SSRAMs are captured on the rising edge of the input clock.
Durin

rue
for the ta
on th AM device
is shown

g a read cycle there is a latency of at least one clock cycle between an address
being captured at the input and data becoming available at the output. This is also t

 write cycle in many devices: an address is captured on one clock cycle, and da
e next. A diagram of a typical timing for a read (or write) cycle for an SSR

 below.

TIMING DIAGRAM: SSRAM READ AND WRITE

Specifying SSRAM timing

You can place the RAM clock pulses at different points within the Handel-C clock if the
Handel-C clock is divided using external_divide or internal_divide.

If you have a fast undivided clock CLK, a divided clock HCLK, and you want to generate a
RAM clock RAMCLK, the following apply:

• The SSRAM clock (RAMCLK) is generated from the fast clock (CLK) according
to the specifications: rclkpos, wclkpos and clkpulselen. These
specifications can be in whole or half cycles of the external clock (i.e. the
specifications are in multiples of 0.5).

• rclkpos specifies the positions of the clock cycles of clock RAMCLK for a read
cycle. These positions are specified in terms of cycles and half-cycles of CLK,
counting forwards from a HCLK rising edge.

• wclkpos specifies the positions of the clock cycles of RAMCLK for a write cycle.
These are also counted forward from an HCLK rising edge.

Handel-C Language Reference Manual

www.celoxica.com Page 203

• clkpulselen specifies the length of the RAMCLK pulses in CLK cycles. This is
specified once per RAM. It applies to both the read and write clocks.

TIMING DIAGRAM: SSRAM READ CYCLE USING GENERATED RAMCLK

The pulse positions and lengths are specified in cycles and half-cycles of CLK.

The westart and welength specifications are used to place the write enable strobe
where it is required.

Pipelining on-chip SSRAM

By default, the DK compiler uses an inverted version of the main Handel-C clock to drive
on-chip synchronous memories. This allows it to conform to Handel-C's timing semantics
of 1 clock cycle per assignment. But it can potentially halve the maximum clock rate for a
design.

Handel-C can pipeline accesses to on-chip SSRAMs if you write your code in a certain
way. The effect is that the memory is driven by the main (non-inverted) Handel-C clock,
potentially doubling the clock rate for the design, and accesses are performed with 1
clock cycle of latency.

Creating pipelined SSRAM accesses

For memory accesses to be pipelined, the following rules must be satisfied:

• The memory must always be read into an uninitialized register, and nowhere
else.

• Nothing else must write to this register.

For multi-port memories, both rules must be satisfied for every readable port.

If these rules are satisfied, the compiler removes the output register and drives the
memory with the main (non-inverted) Handel-C clock.

Handel-C Language Reference Manual

www.celoxica.com Page 204

You can disable the transform by using the -N-piperam command line switch, or by de-
selecting the Enable memory pipelining transformations box on the Synthesis tab in Project Settings.

The transform is effective for all forms of hardware output. Simulation is not affected.

Devices supporting pipelined on-chip SSRAM

The transform only applies to certain devices and configurations:

M-RAM

n/a

Altera Cyclone,

Altera Cyclone II

n/a n/a no except for
single-port
RAMs and
true dual-port
RAMs

no

Xilinx Virtex,

Xilinx Spartan-II

no n/a n/a n/a n/a

Xilinx Virtex-II,

Xilinx Virtex-II Pro,

Xilinx Spartan-3

Xilinx Spartan-3E

Xilinx Spartan-3L

yes n/a n/a n/a n/a

Family BlockRAM EAB M512 M4K

Actel ProAsic,

Actel ProASIC+

yes n/a n/a n/a n/a

Altera Apex20K,

Altera Apex20KE,

Altera Apex20KC,

Altera Excalibur ARM,

Altera Mercury

n/a yes n/a n/a n/a

Altera ApexII n/a yes, except
for single-
port RAMs
and true
dual-port
RAMs

n/a n/a

Altera Stratix,

Altera StratixGX,

Altera Stratix II

n/a n/a yes, except
for true
dual-port
RAMs;

yes, except
for single-
port RAMs
and true
dual-port
RAMs

no

Handel-C Language Reference Manual

www.celoxica.com Page 205

Pipelined on-chip SSRAM timing diagrams
The timing diagrams below illustrate the difference between pipelined accesses to SSRAM
and non-pipelined accesses. The non-pipelined RAM can be transformed into a pipelined
RAM if the memory is read into an uninitialized register reserved specifically for the use
of the memory.

Non-pipelined access to RAM

3 write cycles are performed:

• At time t0, the rising edge of the main Handel-C clock CLK initiates a write
cycle.

• At event e1, WE is asserted and Addr and Din, are set up, so that when the
memory is next clocked, the data at Din will be written at the location
specified in Addr.

• At time t0.5, the inverted clock rising edge clocks the memory, causing it to
execute the write operation.

• At event e2, after the write operation has completed, the data that has been
written becomes available at the output from the memory Dout.

Two further write cycles are performed, starting at time t1 and t2. This is followed by a
read cycle:

Handel-C Language Reference Manual

www.celoxica.com Page 206

• At time t3, the main Handel-C rising clock edge initiates a read cycle.

• At event e3, WE is de-asserted and Addr is set up, so that when the memory is
next clocked, the location specified at Addr will be read.

• At time t3.5, the inverted clock rising edge clocks the memory, causing it to
execute the read operation.

• At event e4, after the read operation has completed, the data that has been
read becomes available at the output from the memory Dout.

• At time t4, the main Handel-C rising clock edge clocks the data that has been
read from the memory into the pipeline register, as well as initiating the next
read cycle.

• At event e5, after the write-to-register operation has completed, the data that
has been written becomes available at the register output Rout.

• At time t5, the data that was read via the pipeline register (D0 in this case) is
ready to be clocked into its destination.

Two further read cycles are performed, starting at time t4 and t5.

Pipelined access to RAM

3 write cycles are performed:

• At time t0, the main Handel-C rising clock edge initiates a write-cycle.

• At event e1, WE is asserted and Addr and Din are set up, meaning that when
the memory is next clocked, the data at Din will be written at the location
specified in Addr.

• At time t1, the main Handel-C rising clock edge clocks the memory, as well as
initiating the next write cycle.

Handel-C Language Reference Manual

www.celoxica.com Page 207

• At event e2, after the write operation has completed, the data that has been
written becomes available at the output from the memory Dout.

Two further write cycles are performed, starting at time t1 and t2. This is followed by a
read cycle:

• At time t3, the main Handel-C rising clock edge initiates a read cycle.

• At event e3, WE is de-asserted and Addr is set up, meaning that when the
memory is next clocked, the location specified at Addr will be read.

• At time t4, the main Handel-C clock rising edge clocks the memory, as well as
initiating the next read cycle.

• At event e4, after the read operation has completed, the data that has been
read becomes available at the output from the memory Dout.

• At time t5, the data that was read (D0 in this case) is ready to be clocked into
its destination.

Two further read cycles are performed, starting at time t4 and t5.

Effect of performing a pipelining transform

The output from the pipeline register (Rout) in the non-pipelined version and the output
from the memory (Dout) in the pipelined version are equivalent, showing that the
transformation does not change the overall behaviour of the circuit. Valid data is
available from the memory output one whole clock cycle later in the pipelined version,
which is why the transform is only valid when there’s a ‘pipeline’ register.

Pipelined SSRAM examples
The following examples demonstrate how you can pipeline accesses to on-chip
SSRAM (see page 203). If the correct conditions are met, the RAM will use the main
Handel-C clock instead of an inverted clock, and the output register will be removed.

Handel-C Language Reference Manual

www.celoxica.com Page 208

SPRAM Example 1: transform is performed
void main(void)
{
 ram unsigned 4 rax[4] with {block = "BlockRAM"};
 static unsigned 2 i;
 unsigned 4 x; // x is un-initialized
 interface bus_in(unsigned 4 i) I();
 interface bus_out() O(unsigned 4 o = x);

 while(1)
 {
 rax[i] = I.i;
 i++;
 x = rax[i]; // RAM only read into x
 }
}

SPRAM Example 2: transform is not performed (register is initialized)
void main(void)
{
 ram unsigned 4 rax[4] with {block = "BlockRAM"};
 static unsigned 2 i;
 static unsigned 4 x; // x is initialized to zero
 interface bus_in(unsigned 4 i) I();
 interface bus_out() O(unsigned 4 o = x);
 while(1)
 {
 rax[i] = I.i;
 i++;
 x = rax[i]; // RAM only read into x
 }
}

Handel-C Language Reference Manual

www.celoxica.com Page 209

SPRAM Example 3: transform is not performed (memory read into two
destinations)
void main(void)
{
 ram unsigned 4 rax[4] with {block = "BlockRAM"};
 static unsigned 2 i;
 unsigned 4 x; // x is un-initialized
 unsigned 4 y; // y is un-initialized
 interface bus_in(unsigned 4 i) I();
 interface bus_out() O(unsigned 4 o = x);
 while(1)
 {
 rax[i] = I.i;
 i++;
 x = rax[i]; // RAM read into x...
 y = rax[i]; // ...but also into y
 }
}

SPRAM Example 4: transform is not performed (pipeline register written to from
elsewhere)
void main(void)
{
 ram unsigned 4 rax[4] with {block = "BlockRAM"};
 static unsigned 2 i;
 unsigned 4 x; // x is un-initialized
 interface bus_in(unsigned 4 i) I();
 interface bus_out() O(unsigned 4 o = x);
 while(1)
 {
 rax[i] = I.i;
 i++;
 x = rax[i]; // RAM only read into x...
 x = 1; // ...but x also written to from elsewhere
 }
}

Handel-C Language Reference Manual

www.celoxica.com Page 210

MPRAM Example 1: transform is performed
void main(void)
{
 mpram
 {
 ram unsigned 4 rax1[4];
 ram unsigned 4 rax2[4];
 } max with {block=1};
 static unsigned 2 i1, i2;
 unsigned 4 x; // x is un-initialized
 unsigned 4 y; // y is un-initialized
 interface bus_in(unsigned 4 i1) I1();
 interface bus_out() O1(unsigned 4 o1 = x);
 interface bus_in(unsigned 4 i2) I2();
 interface bus_out() O2(unsigned 4 o2 = y);
 while(1)
 {
 max.rax1[i1] = I1.i1;
 max.rax2[i2] = I2.i2;
 i1++;
 i2++;
 x = max.rax1[i1]; // mpram port rax1 only read into x
 y = max.rax2[i2]; // mpram port rax2 only read into y
 }
}

Handel-C Language Reference Manual

www.celoxica.com Page 211

MPRAM Example 2: transform is not performed (port ‘rax2’ does not read into a
register)
void main(void)
{
 mpram
 {
 ram unsigned 4 rax1[4];
 ram unsigned 4 rax2[4];
 } max with {block=1};
 static unsigned 2 i1, i2;
 unsigned 4 x; // x is un-initialized
 interface bus_in(unsigned 4 i1) I1();
 interface bus_out() O1(unsigned 4 o1 = x);
 interface bus_in(unsigned 4 i2) I2();
 // port rax2 read directly into an interface, not a ‘pipeline’ register
 interface bus_out() O2(unsigned 4 o2 = max.rax2[i2]);

 while(1)
 {
 max.rax1[i1] = I1.i1;
 max.rax2[i2] = I2.i2;
 i1++;
 i2++;
 x = max.rax1[i1]; // mpram port rax1 only read into x...
 }
}

Targeting external synchronous RAMs

Off-chip synchronous SRAMs can be specified in exactly the same way as on-chip
synchronous SRAMs, with the addition of the rclkpos, wclkpos, clkpulselen and clk
specifications. clk specifies the pin on which the generated RAMCLK will appear, when
the SSRAM in question is external (offchip = 1).

Handel-C Language Reference Manual

www.celoxica.com Page 212

Example

macro expr addressPins = {Pin List...};

Flow-through SSRAM example
ram unsigned 18 FlowBank[1024]
 with {block = 1,
 westart = 2,
 welength = 1,
 rclkpos = {1.5},
 wclkpos = {2.5, 3.5},
 clkpulselen = 0.5};

This code instructs the compiler to build hardware to generate SSRAM control signals as
shown below. It is also applicable for reading from block RAMs in Actel and Xilinx FPGAs
and Altera ESB and tri-matrix memories.

macro expr dataPins = {Pin List...};
macro expr csPins = {Pin List...};
macro expr wePins = {Pin List...};
macro expr oePins = {Pin List...};
macro expr clkPins = {Pin List...};

ram unsigned 32 ExtBank[1024] with {offchip = 1,
 addr = addressPins,
 data = dataPins,
 cs = csPins,
 we = wePins,
 oe = oePins,
 westart = 2,
 welength = 1,
 rclkpos = {1.5, 2.5},
 wclkpos = {1.5, 2.5, 3.5},
 clkpulselen = 0.5,
 clk = clkPins};

Handel-C Language Reference Manual

www.celoxica.com Page 213

Read cycle for a flow-through SSRAM

diagram shows a read-cycle from a flow-through SSRAM. The timing

The rising HCLK edge at t0 initiates the read cycle. Some time later, the address A1 is
set up, which is sampled somewhere in the middle of the HCLK cycle: t0+1.5 in this case.
By the time the next HCLK rising edge occurs at t1, the data is available for reading. The
cycle completes within one Handel-C clock cycle.

Write cycle for a flow-through SSRAM

Flow-through SSRAMs perform a "late" write cycle; the data is clocked in one clock cycle
after the address is sampled.

The timing diagram shows the complete write cycle.

Handel-C Language Reference Manual

www.celoxica.com Page 214

The HCL ATAIN
signals to c he RAM
at the specified address: the first to sample the address, the second to sample the data.
However, since we’re not expecting to read from the RAM’s output, we can wait until the
last possible moment. In this case, the two rising edges of RAMCLK occur at t0+2.5 and
t0+3.5.

The write enable signal must be low during the rising edge of RAMCLK that samples the
address, but not during the one that samples the data. This can be done by setting
westart and welength as shown. The entire cycle completes within a single Handel-C
clock cycle.

Pipelining off-chip SSRAM example
This method of pipelining SSRAM is most suitable for off-chip RAMs. For on-chip SSRAM,
it is usually more efficient to use a pipelining transformation.

ram unsigned 18 PipeBank[1024]
 with {block = 1,
 westart = 1.5,
 welength = 1,
 rclkpos = {1.5, 2.5},
 wclkpos = {1.5, 2.5, 3.5},
 clkpulselen = 0.5};

K rising edge at t0 initiates the write cycle, causing the ADDRESS and D
hange. Two cycles of RAMCLK are needed to clock the new data into t

Handel-C Language Reference Manual

www.celoxica.com Page 215

Read cycle for a pipelined-output SSRAM

The timing diagram shows the read cycle

This read cycle is very similar to that for a flow through RAM. The rising HCLK edge at t0
initiates the read cycle. Some time later, the address A1 is set up, which is sampled
somewhere near the middle of the HCLK cycle: (t0+1.5 in this case). The RAM contents
at address A1 are then piped to the RAM’s output register; it must be made available at
the RAM output. A second RAMCLK pulse (at t0+2.5 in this case) is used to do this. By
the time the next HCLK rising edge occurs at t1, the data is available for reading by the
Handel-C design. The cycle completes within one Handel-C clock cycle.

Write cycle for a pipelined-output SSRAM

Pipelined-output SSRAMs perform a "late-late" write cycle. This means that data is
written to memory two clock cycles after the address is sampled.

Handel-C Language Reference Manual

www.celoxica.com Page 216

The timing diagram shows the complete cycle.

The HCLK rising edge at t0 initiates the write cycle, causing the ADDRESS and DATAIN
signals to change. Three cycles of RAMCLK are needed to clock the new data into the
RAM at the specified address: the first to sample the address and the third to sample the
data. Since you will not read from the RAM on a write strobe, you can sample the data as
late as possible to give the circuit maximum time to set up the data. In this case, the
three rising edges of RAMCLK occur at t0+1.5, t0+2.5 and t0+3.5.

The write enable signal must be low during the rising edge of RAMCLK that samples the
address, but not during the one that samples the data. This can be done by setting
westart and welength as shown. The entire cycle completes within a single Handel-C
clock cycle.

10.3.3 Targeting Stratix and Cyclone memory blocks

Altera Stratix, Stratix GX and Stratix II devices have 3 types of embedded memory:
M512, M4K and M-RAM. Cyclone and Cyclone II devices only have M4K. You can specify
what type of memory you want to build by using the block specification.

Type of
memory

block specification

M512 with {block = "M512"}

M4K with {block = "M4K"}

M-RAM with {block = "M-RAM"}

Handel-C Language Reference Manual

www.celoxica.com Page 217

If you do not use the block specification the memory is set to "AUTO" and Quartus
determines the most appropriate memory type when you place and route.

All Stratix memories are fully synchronous. If you try to make them asynchronous, for
example by using the westart and welength specifications, you will get a compiler error.

M-RAM cannot be initialized. This means that you cannot have a ROM built out of M-RAM.
You will get a compiler error if you build a ROM using the with {block = "M-RAM"}
specification.

M512 memory cannot be configured as a bi-directional dual-port MPRAM. If you try to
create this, the compiler will issue a warning.

Example

set family = AlteraStratix;
set part = "EP1S10B672C7";
set clock = external;

ram unsigned 8 autoRam[16]; // Let Quartus select a suitable memory
structure
ram unsigned 8 m512Ram[16] with {block = "M512"}; // Use M512 blocks
ram unsigned 8 m4kRam[16] with {block = "M4K"}; // Use M4K blocks
ram unsigned 8 mRam[16] with {block = "M-RAM"}; // Use M-RAM blocks

void main(void)
{
 autoRam[0] = 1;
 m512Ram[0] = 1;
 m4kRam[0] = 1;
 mRam[0] = 1;

 ...etc...
}

10.3.4 Using on-chip RAMs in Actel devices

On-chip RAMs in Actel ProASIC and ProASIC+ devices use the embedded memory
structures, which are of a fixed width and depth. These blocks can be combined to create
deeper and wider memory spaces. When writing Handel-C programs, you must be careful
not to exceed the number of memory blocks in the target device or the design will not
place and route successfully. It is possible to use RAMs that do not match one of the
width/depth combinations, but memory space may be wasted.

Handel-C Language Reference Manual

www.celoxica.com Page 218

Synchronous and asynchronous access

Memory blocks in ProASIC and ProASIC+ parts can be configured to be either
synchronous or asynchronous. If you do not apply any clock or write-enable
specifications, Handel-C will create RAMs with a synchronous write port and
asynchronous read port.

If you apply clock position specifications to the RAM, the read and write ports will both be
synchronous.

If you apply any of the write-enable specifications (westart, welength or wegate) to the
RAM, both write and read access will be asynchronous.

When declaring a memory as a MPRAM, if you only apply write-enable specifications to
the read port AND you apply clock specifications to the write port, you will get a compiler
error, as you cannot have an asynchronous write port and a synchronous read port.

Initialization

Actel memories may not be initialized.

10.3.5 Using on-chip RAMs in Altera devices

EAB structures

On-chip RAMs in Altera Flex10K devices use the EAB structures. These blocks can be
configured in a number of data width/address width combinations. When writing Handel-
C programs, you must be careful not to exceed the number of EAB blocks in the target
device or the design will not place and route successfully. While it is possible to use RAMs
that do not match one of the data width/address width combinations, EAB space may be
wasted by such a RAM.

Synchronous and asynchronous access

RAM blocks in Flex, Apex, Excalibur and Mercury parts can be configured to be either
synchronous or asynchronous. If you do not apply any clock or write-enable
specifications, Handel-C will create RAMs with a synchronous write port and
asynchronous read port as long as the target hardware supports it.

If you apply clock position specifications to the RAM, the read and write ports will both be
synchronous.

If you apply any of the write-enable specifications (westart, welength or wegate) to the
RAM, both write and read access will be asynchronous.

When declaring a memory as a MPRAM, if you only apply write-enable specifications to
the read port AND you apply clock specifications to the write port, you will get a compiler
error, as you cannot have an asynchronous write port and a synchronous read port.

Handel-C Language Reference Manual

www.celoxica.com Page 219

Initialization

RAM/ROM initialization files with a .mif extension will be generated on compilation to
feed into the Max Plus II or Quartus software. This process is transparent if they are in
the same directory as the EDIF (.edf extension) file generated by the Handel-C compiler.

Creating RAMs without an inverted clock

If you declare a single-port RAM for Altera Flex, Apex 20, Mercury or Excalibur devices,
the Handel-C compiler converts this into an MPRAM with a ROM port and a WOM port.
This removes the inverted clock, and so increases the possible clock rate. If you want to
remove the inverted clock from an on-chip memory on an ApexII device, you need to do
this manually by creating an MPRAM instead of a RAM. The compiler does not do this
automatically as the hardware created for an MPRAM is larger than that for a RAM on
ApexII devices.

Stratix and Cyclone memories are totally synchronous, so creating an MPRAM with a ROM
and a WOM port does not automatically result in the inverted clock being removed.
Instead, you can pipeline the MPRAM, or you can customize the clock using the rclkpos,
wclkpos and clkpulselen specifications.

10.3.6 Using on-chip RAMs in Xilinx devices

Handel-C supports the synchronous RAMs on Virtex series and Spartan-II and Spartan-3
parts directly simply by declaring a RAM or ROM. For example:

ram unsigned 6 x[34];

This will declare a RAM with 34 entries, each of which is 6 bits wide.

When writing Handel-C programs, you must be careful not to exceed the number of
memory blocks in the target device or the design will not place and route successfully.

10.3.7 Using external ROMs

An external ROM is declared as an external RAM with an empty write enable pin list. For
example:

Handel-C Language Reference Manual

www.celoxica.com Page 220

ram unsigned 8 ExtROM[16384] with {
 offchip = 1,
 data = {"P1", "P2", "P3", "P4",
 "P5", "P6", "P7", "P8"},
 addr = {"P9", "P10", "P11", "P12",
 "P13", "P14", "P15", "P16",
 "P17", "P18", "P19", "P20",
 "P21", "P22"},
 we = {},
 oe = {"P24"},
 cs = {"P25"}};

Note that no westart, welength or wegate specification is required since there is no
write strobe signal on a ROM device.

10.3.8 Connecting to RAMs in foreign code

You can create ports to connect to a RAM by using the ports = 1 specification to your
memory definition. This will generate VHDL, Verilog or EDIF wires which can be
connected to a component created elsewhere. The ports specification cannot be used in
conjunction with the offchip=1 specification, but all other specifications will apply.

The interface generated will have separate read (output) and write (data) ports, write
enable, data enable and clock wires. This ensures that it can be connected to any device.
Pin names provided in the addr, data, cs, we, oe, and clk specifications will be
passed through to the generated EDIF. They are not passed through to VHDL or Verilog,
since VHDL and Verilog interfaces are generated as n-bit wide buses rather than n 1-bit
wide wires. This means that it is ambiguous to specify a separate identifier for each wire.
If they are used when compiling to VHDL or Verilog, the compiler issues a warning.

For VHDL or Verilog output, the compiler generates meaningful port names. For example,
with the following RAM declaration compiled to VHDL:

ram unsigned 4 rax[4] with
 {ports = 1, data = dataPins, addr = addrPins,
 we = wePins, cs = csPins, oe = oePins};

the compiler will warn that all the pins specifications have been ignored, and will
generate an interface in VHDL with the following ports:

Handel-C Language Reference Manual

www.celoxica.com Page 221

component rax_SPPort
port(
rax_SPPort_addr: in unsigned(1 downto 0);
rax_SPPort_clk: in std_logic;
rax_SPPort_cs: in std_logic;
rax_SPPort_data_en: in std_logic;
rax_SPPort_data_in: out unsigned(3 downto 0);
rax_SPPort_data_out: in unsigned(3 downto 0);
rax_SPPort_oe: in std_logic;
rax_SPPort_we: in std_logic
);

The port names consist of the memory name (rax in this case), description of the
memory type (SPPort : single port in this case) and an identifier describing the ports
function.

A clock port will always be generated.

If you use the ports specification with an MPRAM, a separate interface will be generated
for each port.

Generating an interface to a foreign code RAM

set family = XilinxVirtex;
set part = "V1000BG560-4";
set clock = external "C1";

unsigned 4 a;
ram unsigned 4 rax[4] with {ports = 1};

void main(void)
{
 static unsigned 2 i = 0;

 while(1)
 {
 par
 {
 i++;
 a++;
 rax[i] = a;
 }
 a = rax[i];
 }
}

Handel-C Language Reference Manual

www.celoxica.com Page 222

The declaration of rax would produce wires

rax_SPPort_addr<0> // Address
rax_SPPort_addr<1>
rax_SPPort_data_in<0> // Data In
rax_SPPort_data_in<1>
rax_SPPort_data_in<2>
rax_SPPort_data_in<3>
rax_SPPort_data_out<0> // Data Out
rax_SPPort_data_out<1>
rax_SPPort_data_out<2>
rax_SPPort_data_out<3>
rax_SPPort_data_en // Data Enable
rax_SPPort_clk // Clock
rax_SPPort_cs // Chip Select
rax_SPPort_oe // Output Enable
rax_SPPort_we // Write Enable

Handel-C Language Reference Manual

www.celoxica.com Page 223

Generating an interface to a foreign code MPRAM

set family = XilinxVirtex;
set part = "V1000BG560-4";
set clock = external "C1";

unsigned 4 a;

mpram Mpaz
{
 wom unsigned 4 wox[4];
 rom unsigned 4 rox[4];
} mox with {ports = 1};

void main(void)
{
 static unsigned 2 i = 0;

 while(1)
 {
 par
 {
 i++;
 a++;
 mox.wox[i] = a;
 }
 a = mox.rox[i];
 }
}

The declaration of the read only port rox would produce wires

mox_rox_addr_0 // Address
mox_rox_addr_1
mox_rox_clk // Clock
mox_rox_cs // Chip select
mox_rox_data_en // Data enable
mox_rox_oe // Output enable
mox_rox_we // Write enable
mox_rox_data_in_0 // Data into Handel-C, out from foreign code memory
mox_rox_data_in_1
mox_rox_data_in_2
mox_rox_data_in_3

The declaration of the read only port wox would produce wires

Handel-C Language Reference Manual

www.celoxica.com Page 224

mox_wox_addr_0 // Address
mox_wox_addr_1
mox_wox_clk // Clock
mox_wox_cs // Chip select
mox_wox_data_en // Data enable
mox_wox_data_out_0 // Data out from Handel-C, into foreign code memory
mox_wox_data_out_1
mox_wox_data_out_2
mox_wox_data_out_3
mox_wox_oe // Output enable
mox_wox_we // Write enable

10.3.9 Using other RAMs

The interface to other types of RAM such as DRAM should be written by hand using
interface declarations. Macro procedures can then be written to perform complex or even
multi-cycle accesses to the external device.

Handel-C Language Reference Manual

www.celoxica.com Page 225

11 Interfacing with external hardware
All off-chip accesses are based on the idea of a bus which is just a collection of external
pins. Handel-C provides the ability to read the state of pins for input from the outside
world and set the state of pins for writing to the outside world. Tri-state buses are also
supported to allow bi-directional data transfers through the same pins.

The pins used may be defined in Handel-C by using pin specifications (e.g. data). If this
is omitted, the pins will be left unconstrained and can be assigned by the place and route
tools.

Note that Handel-C provides no information about the timing of the change of state of a
signal within a Handel-C clock cycle. Timing analysis is available from the FPGA or PLD
manufacturer's place-and-route tools.

Handel-C programs can also interface to external logic (other Handel-C programs,
programs written in VHDL or Verilog etc.) by using user-defined interfaces or Handel-C
ports.

 Your license may not allow you to use interfaces. If this is the case you can
only interface to external devices using macros provided in any Celoxica
libraries you have licenses for, such as PAL.

11.1 Interface sorts

Handel-C provides a number of predefined interface sorts.

"bus-type" interfaces (bus_*) generate the hardware for buses connected to pins.

"port-type" interfaces (port_*) generate the hardware for floating ports (buses which
are not connected to pins).

These can be of any width, and can carry signals between different sections of Handel-C
code, or to software or hardware beyond the Handel-C program.

You can also define your own sorts to interface to external blocks of code ("generic" or
custom interface sorts).

Handel-C Language Reference Manual

www.celoxica.com Page 226

Predefined interface sorts

Sort identifier Description

bus_in Input bus from pins

bus_latch_in Registered input bus from pins

bus_clock_in Clocked input bus from pins

bus_out Output bus to pins

bus_ts Bi-directional tri-state bus

bus_ts_latch_in Bi-directional tri-state bus with
registered input

bus_ts_clock_in Bi-directional tri-state bus with
clocked input

port_in Input port from logic

port_out Output port to logic

Custom or generic interface sorts

You can define your own interface sorts to connect to non-Handel-C objects:

• Hardware descriptions written in another language.
VHDL, Verilog and EDIF are currently supported. For a VHDL code interface,
the interface sort would be the name of the VHDL entity. For a Verilog code
interface, the interface sort would be the name of the Verilog module.

• Native PC object code used in simulation.
Programs that run on your PC for simulation and connect to a Handel-C
interface are known as plugins. There are special port specifications to enable
you to connect user-defined interfaces with a plugin for simulation. These are
extlib, extfunc, and extinst.

11.1.1 Reading from external pins bus_in

The bus_in interface sort allows Handel-C programs to read from external pins. Its
general usage is:

interface bus_in(type portName)
 Name()
 with {data = {Pin List}};

Reading the bus is performed by accessing the identifier Name.portName as a variable
which will return the value on those pins at that clock edge. If no input port name is
given, the port name defaults to in.

Handel-C Language Reference Manual

www.celoxica.com Page 227

Example

interface bus_in(int 4 To) InBus()
 with {data = {"P4", "P3", "P2", "P1"}};
int 4 x;

x = InBus.To;

This declares a bus connected to pins P1, P2, P3 and P4 where pin P4 is the most
significant bit and pin P3 is the least significant bit.

The variable x is set to the value on the external pins. The type of InBus.To is int 4 as
specified in the type list after the bus_in keyword.

11.1.2 Registered reading from external pins: bus_latch_in

The bus_latch_in interface sort is similar to bus_in but allows the input to be registered
on a condition. This may be required to sample the signal at particular times. Its general
usage is:

interface bus_latch_in(type portName)
 Name(type conditionPortName=Condition)
 with {data = {Pin List}};

Reading the bus is performed by accessing the identifier Name.portName as a variable
which will return the value on those pins at that clock edge. If no input port name is
given, the port name defaults to in. Condition specifies a signal that is used to clock the
input registers in the FPGA or PLD. The rising edge of this signal clocks the external
signal into the internal value.

Example

unsigned 1 get;
int 4 x;

interface bus_latch_in(int 4 To)
 InBus(unsigned 1 condition = get)
 with {data = {"P4", "P3", "P2", "P1"}};

get = 0;
get = 1; // Register the external value
x = InBus.To; // Read the registered value

Handel-C Language Reference Manual

www.celoxica.com Page 228

11.1.3 Clocked reading from external pins: bus_clock_in

The bus_clock_in interface sort is similar to the bus_in interface sort but allows the
input to be clocked continuously from the Handel-C global clock. This may be required to
synchronize the signal to the Handel-C clock. Its general usage is:

interface bus_clock_in(type portName) Name()
 with {Specs};

Reading the bus is performed by accessing the identifier Name.portName as a variable
which will return the value on those pins at that clock edge. If no input port name is
given, the port name defaults to in. The rising edge of the Handel-C clock clocks the
external signal into the internal value. For example:

interface bus_clock_in(int 4 InTo) InBus() with
 {data = {"P4", "P3", "P2", "P1"}};

x = InBus.InTo; // Read flip-flop value

11.1.4 Writing to external pins: bus_out

The bus_out interface sort allows Handel-C programs to write to external pins. Its
general usage is:

interface bus_out()
 Name(type portName=Expression)
 with {data = {Pin List}};

A specific example is:

interface bus_out () OutBus(int 4 OutPort=x+y)
 with {data = {"P4", "P3", "P2", "P1"}};

This declares a bus connected to pins 1, 2, 3 and 4 where pin 4 is the most significant bit
and pin 1 is the least significant bit. The value appearing on the external pins is the value
of the expression x+y at all times.

11.1.5 Bidirectional data transfer: bus_ts

The bus_ts interface sort allows Handel-C programs to perform bi-directional off-chip
communications via external pins. Its general usage is:

Handel-C Language Reference Manual

www.celoxica.com Page 229

interface bus_ts (type inPortName)
 Name(type outPortName = Value,
 type conditionPortName = Condition)
 with {Specs};
Value is an expression giving the value to output on the pins. Condition is an
expression giving the condition for driving the pins. When Condition is non-zero (i.e.
true), the value of Value is driven on the pins. When the value of Condition is zero, the
pins are tri-stated and the value of the external bus can be read using the identifier
Name. inPortName. If inPortName is not defined, the port name defaults to in.

If you attempt to read from a tri-state bus when it is in write mode (i.e. condition is non-
zero), you will get the value that you are writing to the bus.

Example

unsigned 1 condition;
int 4 x;

interface bus_ts(int 4 read)
 BiBus(int write=x+1,
 unsigned 1 enable= condition)
 with {data = {"P4", "P3", "P2", "P1"}};

condition = 0; // Tri-state the pins
x = BiBus.read; // Read the value
condition = 1; // Drive x+1 onto the pins

This example reads the value of the external bus into variable x and then drives the
value of x + 1 onto the external pins.

 Take care when driving tri-state buses that the FPGA/PLD and another device
on the bus cannot drive simultaneously as this may result in damage to one or
both of them.

11.1.6 Bidirectional data transfer with registered input:
bus_ts_latch_in

The bus_ts_latch_in interface sort allows Handel-C programs to perform bidirectional
off-chip communications via external pins with inputs registered on a condition. Its
general usage is:

Handel-C Language Reference Manual

www.celoxica.com Page 230

interface bus_ts_latch_in (type inPortName)
 Name(type outPortName = Value,
 type conditionPortName = Condition,
 type clockPortName = Clock)
 with {Specs};

Value is an expression giving the value to output on the pins. Condition is an
expression giving the condition for driving the pins. Clock is an expression giving the
signal to clock the input from the pins. When Condition is non-zero (i.e. true), the value
of Value is driven on the pins. When the value of Condition is zero, the pins are tri-
stated and the registered value of the external bus can be read using the identifier Name.
inPortName. If inPortName is not defined, the port name defaults to in.

The rising edge of the value of the third expression clocks the external values through to
the internal values on the chip.

If you attempt to read from a tri-state bus when it is in write mode (i.e. condition is non-
zero), you will get the value that you are writing to the bus.

Example

int 1 get;
unsigned 1 condition;
int 4 x;

interface bus_ts_latch_in(int 4 read)
 BiBus(int write = x+1,
 unsigned 1 enable = condition,
 unsigned 1 clock_port = get)
 with {data = {"P4", "P3", "P2", "P1"}};

condition = 0; // Tri-state external pins
get = 0;
get = 1; // Register external value
x = BiBus.read; // Read registered value
condition = 1; // Drive x+1 onto external pins

This example samples the external bus and reads the registered value into variable x and
then drives the value of x + 1 onto the external pins.

 Take care when driving tri-state buses that the FPGA/PLD and another device
on the bus cannot drive simultaneously as this may result in damage to one or
both of them.

Handel-C Language Reference Manual

www.celoxica.com Page 231

11.1.7 Bidirectional data transfer with clocked input:
bus_ts_clock_in

The bus_ts_clock_in interface sort allows Handel-C programs to perform bidirectional
off-chip communications via external pins with inputs clocked continuously with the
Handel-C clock. Its general usage is:

interface bus_ts_clock_in (type inPortName)
 Name(type outPortName = Value,
 type conditionPortName = Condition)
 with {Specs};

Value is an expression giving the value to output on the pins. Condition is an
expression giving the condition for driving the pins. When Condition is non-zero (i.e.
true), the value of Value is driven on the pins. When the value of Condition is zero, the
pins are tri-stated and the value of the external bus can be read using the identifier
Name. inPortName. If inPortName is not defined, the port name defaults to in.

If you attempt to read from a tri-state bus when it is in write mode (i.e. condition is non-
zero), you will get the value that you are writing to the bus.

The rising edge of the Handel-C clock reads the external values into the internal flip-flops
on the chip. For example:

unsigned 1 condition;
int 4 x;

condition = 1; // Drive x+1 onto external pins

This example reads the value from the flip-flop into variable x and then drives the value
of x + 1 onto the external pins.

 Take care when driving tri-state buses that the FPGA/PLD and another device

interface bus_ts_clock_in (int 4 read)
 BiBus(int 4 writePort=x+1,
 unsigned 1 enable=condition)
 with {data = {"P4", "P3", "P2", "P1"}};

condition = 0; // Tri-state external pins
x = BiBus.read; // Read registered value

on the bus cannot drive simultaneously as this may result in damage to one or
both of them.

Handel-C Language Reference Manual

www.celoxica.com Page 232

11.1.8 Example hardware interface

The example shows the use of buses. The scenario is of an external device connected to
the FPGA/PLD which may be read from or written to. The device has a number of signals
connected to the FPGA/PLD.

WriteRdy 7 Able to write to device

ReadRdy 8 Able to read from device

Read cycle timing

A read from the device is performed by waiting for ReadRdy to become active (high). The
Read signal is then taken high for one clock cycle and the data sampled on the falling
edge of the strobe.

Signals connected

Signal
Name

FPGA pin Description

D3..0 1, 2, 3, 4 Data Bus

Write 5 Write strobe

Read 6 Read strobe

Handel-C Language Reference Manual

www.celoxica.com Page 233

Write cycle timing

A write to the device is performed by waiting for WriteRdy to become active (high). The
Write signal is then taken high for one clock cycle while the data is driven to the device
by the FPGA. The device samples the data on the falling edge of the Write signal.

Bus declarations

The first stage of the code declares the buses associated with each of the external
signals.

int 4 Data;
int 1 En = 0;
interface bus_ts_clock_in(int 4 DataIn)
 dataB(int outPort=Data, int EnableSignal=En) with
 {data = {"P4", "P3", "P2", "P1"}};

int 1 Write = 0;
interface bus_out() writeB(int WriteSignal = Write) with
 {data = {"P5"}};

int 1 Read = 0;
interface bus_out() readB(int readSignal=Read) with
 {data = {"P6"}};

interface bus_clock_in(int 1 wr)
 WriteReady() with {data = {"P7"}};

interface bus_clock_in(int 1 readySignal)
 ReadReady() with {data = {"P8"}};

Handel-C Language Reference Manual

www.celoxica.com Page 234

void main (void)
{
 int 4 Data, Reg;

 // Read word from external device
 while (ReadReady.readySignal == 0)
 delay;

 Read = 1; // Set the read strobe
 par
 {
 Data = dataB.DataIn; // Read the bus
 Read = 0; // Clear the read strobe
 }

 // Write one word back to external device
 Reg = Data + 1;
 while (WriteReady.wr == 0)
 delay;

 par
 {
 En = 1; // Drive the bus
 Write = 1; // Set the write strobe
 }

 Write = 0; // Clear the write strobe
 En = 0; // Stop driving the bus
}

Writing data

You can change the values on the output buses by setting the values of the Data, Write
and Read variables. You can drive the data bus with the contents of Data by setting En
to 1.

The variables that drive buses have been initialized to 0. That means that these variables
must be static or global. This may be important when driving write strobes. Care should
be taken during configuration that the FPGA pins are disconnected in some way from the
external devices because the FPGA pins become tri-state during this time.

The main program

The main program reads a word from the external device before writing one word back.

Handel-C Language Reference Manual

www.celoxica.com Page 235

void main (void)
{
 int 4 Data, Reg;

 // Read word from external device
 while (ReadReady.readySignal == 0)
 delay;
 Read = 1; // Set the read strobe
 par
 {
 Data = dataB.DataIn; // Read the bus
 Read = 0; // Clear the read strobe
 }

 // Write one word back to external device
 Reg = Data + 1;
 while (WriteReady.wr == 0)
 delay;
 par
 {
 En = 1; // Drive the bus
 Write = 1; // Set the write strobe
 }
 Write = 0; // Clear the write strobe
 En = 0; // Stop driving the bus
}

Note that during the write phase, the data bus is driven for one clock cycle after the write
strobe goes low to ensure that the data is stable across the falling edge of the strobe.

11.2 Simulating interfaces

You can combine the hardware and simulation versions of your program by using the
#ifdef construct. For example:

Handel-C Language Reference Manual

www.celoxica.com Page 236

#define SIMULATE

#ifdef SIMULATE
{
 ...
}
#else
{
 ...
}
#endif

There are several ways to simulate the reading and writing of data across an interface.

Bus-type and port-type interfaces

If you have a bus-type interface or a port-type interface (port_in or port_out) you can
use the infile and outfile specifications to read and write data. (Bus-type interfaces
are bus_in, bus_latch_in, bus_clock_in, bus_out, bus_ts, bus_ts_latch_in and
bus_ts_clock_in).

For example:

set clock = external "P1";

unsigned 8 out;
interface port_in(unsigned 8 i) pi() with {infile = "in.txt"};
interface port_out() po(out) with {outfile = "out.txt"};
void main (void)
{
 do
 {
 out = pi.i;
 }while(out != 0);
}

infile and outfile can only connect to files with data in a simple format. If your data is
more complex, you could write a C/C++ function and call it to bring in the data.

If you want to model the hardware as well as the functionality of your design, you will
need to co-simulate your interface with a model of the component to which it will be
connected (see below).

Generic interfaces

If you have written a custom (generic) interface, you will need to co-simulate the
interface with a model of the component to which it will be connected in hardware. If you
write the model in Handel-C, you can co-simulate it with your Handel-C interface using

Handel-C Language Reference Manual

www.celoxica.com Page 237

dkconnect.dll. To synchronize the simulations, use dksync.dll. If your model is in
VHDL or Verilog, you can co-simulate it with your Handel-C design using the Co-
simulation Bridge for ModelSim provided in the Platform Developer's Kit.

11.3 Buses and the simulator

The Handel-C simulator cannot simulate buses directly, because the simulation of buses
cannot determine when input and output should occur. The recommended process for
debugging is:

For simple data, use a channel or a chanin/chanout to connect to a file. This is the
simplest method.

For more complex buses/interfaces, write a C/C++ function and call it to bring in data.
This allows you to operate on the data or read it in a complex format. This models
functionality but not hardware.

To model buses accurately, use the Plugin Library to write a plugin which can be co-
simulated. This is precise and allows you to read I/O signals using the Waveform
Analyzer, but can be slow and cumbersome.

Using preprocessor definitions

By using the #define and #ifdef...#endif constructs of the preprocessor, it is possible
to combine both the simulation and hardware versions of your program into one.

Channel example

#define SIMULATE
#ifdef SIMULATE
 input ? value;
#else
 value = BusIn.in;
#endif

External function call example

#define SIMULATE

#ifdef SIMULATE
 extern "C++" int 8 bus_input_function(void);
 data_in = bus_input_function();
#else
 interface bus_in(int 8 in) BusIn();
 data_in = BusIn.in;
#endif

Handel-C Language Reference Manual

www.celoxica.com Page 238

Example with plugin

To simulate a tri-state bus:

interface bus_ts (int 32 in with
 {extlib = "MyPlugin.dll", extinst = "1", extfunc = "DataBusIn"})
 DataBus(int 32 out = DataOut with {extlib = "MyPlugin.dll",
 extinst = "1", extfunc = "DataBusOut"},
 int 1 enable = !WriteBus.in with {extlib = "MyPlugin.dll",
 extinst = "1", extfunc = "DataBusEnable"})
 with {data = pinList};

In this case, the functions DataBusIn, DataBusOut and DataBusEnable would be
provided in the plugin MyPlugin.dll and called by the simulator. The extlib, extfunc
and extinst specifications are ignored if compiled to HDL so the interface definition does
not have to be within an #ifdef.

11.4 Merging pins

11.4.1 Merging clock pins

You can merge clock pins as long as:

• any pins specifications given to the two clocks match.

• there are no conflicts between any timing specifications given to the clocks.

For example, if you specified two clock domains in the same project with the following
code:

set clock = external "C1" with {rate = 10}; //clock declaration in file
one.hcc
set clock = external "C1" with {rate = 20}; //clock declaration in file
two.hcc

you would get a compiler error, as the rate specifications don't match.

If one of the clocks is divided you need to divide the value of the rate specification to
match. For example:

set clock = external "C1" with {rate = 10}; // file one.hcc
set clock = external_divide 3 "C1" with {rate = 3.3333333333333333}; //
file two.hcc

If you need to use decimal places to specify the rate for the divided clock, the compiler
will round up the value to the nearest whole number as long as you use at least 16
decimal places (3 x3.3333333333333333 is rounded up to 10).

Handel-C Language Reference Manual

www.celoxica.com Page 239

11.4.2 Merging input pins

Input pins can be merged so that pins can be read simultaneously into multiple variables.
This can be done by specifying multiple interfaces (bus_in, bus_clock_in,
bus_latch_in) which have some pins in common. If required, a different subset of pins
can be specified for each instance of the interface. For example:

interface bus_in(int 8 wide) wideDataBus() with
 {data ={"P7", "P6", "P5", "P4", "P3",
 "P2", "P1", "P0"}};
interface bus_in(int 3 thin) thinDataBus() with
 {data ={"P5", "P4", "P3"}};

wideDataBus.wide would give the values of pins P0 – P7, whereas thinDataBus.thin
would give the three bit value on pins P3, P4 and P5.

If the input pins have an intime specification, you need to ensure that these match.

11.4.3 Merging tri-state pins

Tri-state bus pins can be merged, though doing so will generate a compiler warning, as
the compiler cannot detect whether the outputs for both pins might be enabled at the
same time. If both outputs are enabled at the same time, the result is undefined. If you
have used any intime and outtime specifications, make sure that they match.

You might wish to merge output pins for a tri-state bus if you wished to switch the circuit
connections from one external piece of logic to another. For example:

int 1 en1, en2;
int 4 x, y;
interface bus_ts_clock_in (int 4 read)
 BiBus1(int 4 writePort=x+1, unsigned 1 enable = (en1==1))
 with {data = {"P4", "P3", "P2", "P1"}};
interface bus_ts_clock_in (int 4 read)
 BiBus2(int 4 writePort=y+1, unsigned 1 enable = (en2==1))
 with {data = {"P4", "P3", "P2", "P1"}};

 Take care when driving tri-state buses that the FPGA/PLD and another device
on the bus cannot drive simultaneously as this may result in damage to one or
both of them.

Handel-C Language Reference Manual

www.celoxica.com Page 240

11.5 Timing considerations for buses

bus_in interfaces

This de

async
the val

The ou n

Th ut
(as s

Race conditions within the combinational logic can lead to glitches on output pins
between clock edges. When this happens, pins may glitch from 0 to 1 and back to zero or
vice versa as signals propagate through the combinational logic. Adding a flip-flop at the
output removes these effects.

Bi-directional tri-state buses

The timing considerations for bus_in and bus_out interfaces should also be taken into
account when using bi-directional tri-state buses since these are effectively a
combination of an input bus and an output bus.

11.5.1 Example timing considerations for input buses

interface bus_in(int 1 read) a() with
 {data = {"P1"}};

par
{
 x = a.read;
 y = a.read;
}

 form of bus is built with no register between the external pin and the points insi
the FPGA or PLD where the data is used. If the value on the external pin changes

hronously with the Handel-C clock then routing delays within the FPGA can cause
ue to be read differently in different parts of the circuit. The solution to this

problem is to use either a bus_latch_in or a bus_clock_in interface sort.

bus_out interfaces

tput value on pins cannot be guaranteed except at rising Handel-C clock edges. I
between clock edges, the value may be in the process of changing. Since the routing
delays through different parts of the logic of the output expression are different, some
pins may change before others giving rise to intermediate values appearing on the pins.

is is particularly apparent in deep combinational logic. Adding a flip-flop to the outp
hown in the bus_out example) will minimize these effects.

Handel-C Language Reference Manual

www.celoxica.com Page 241

Even though a.read is assigned to both x and y on the same clock cycle, if the delay
from pin 1 to the flip-flop implementing the x variable is significantly different from that
between pin 1 and the flip-flop implementing the y variable then x and y may end up
with different values.

The delay between pin 1 and the input of y is slightly longer than the delay between pin
1 and the input to x. As a result, when the rising edge of the clock registers the values
of x and y, there is one clock cycle when x and y have different values.

This effect can also occur in places that are more obscure.

interface bus_in(int 1 read) a() with
 {data = {"P1"}};

while (a.read==1)
{
 x = x + 1;
}

Although a.read is only apparently used once, the implementation of a while loop
requires the signal to be routed to two different locations giving the same problem as
before. The solution to this problem is to use either a bus_latch_in or a bus_clock_in
interface sort.

The compiler will detect any occurrences of a pin feeding more than one register, and
issue a warning.

Handel-C Language Reference Manual

www.celoxica.com Page 242

11.5.2 Example timing considerations for output buses

int 8 x;
int 8 y;

interface bus_out() output(int out = x * y)
 with {data = {"P7", "P6", "P5", "P4",
 "P3", "P2", "P1", "P0"}};

A multiplier contains de nge before others leading
to intermediate values. It is possible to minimize this effect (although not eliminate it
completely) by adding a variable before the output. This effectively adds a flip-flop to the
output. The above example then becomes:

int 8 x;
int 8 y;
int 8 z;

interface bus_out() output(int out = z)
 with {data = {"P7", "P6", "P5", "P4",
 "P3", "P2", "P1", "P0"}};

z = x * y;

You must now take care to update the value of z whenever the value output on the bus
must change.

11.6 Metastability

If the input of a flip-flop is connected to a signal which is not synchronous with the flip-
flop's clock then its setup or hold time may be violated. This can result in the flip-flop
entering a metastable state when it is clocked. The output of the flip-flop will then have
an unpredictable value for an indeterminate period of time but will eventually become
either 0 or 1.

In some circumstances (such as when two independent clocks are involved) metastability
cannot be avoided. While a metastable flip-flop may remain so for any length of time,
there is a high probability that it will enter a stable state after a relatively short delay.

ep logic so some of the 8 pins may cha

Handel-C Language Reference Manual

www.celoxica.com Page 243

The metastability characteristics of digital logic devices vary enormously. Refer to
product data sheets for details.

The diagram shows flip-flops in separate clock domains. The central flip-flop receives
data from the other clock domain. Its value is copied to the second flip-flop after 1 clock
tick.

In that clock tick, it must resolve metastability and pass through any routing and output
and setup delays.

11.6.1 Techniques to minimize the problem

• use extra registers to stabilize the data

• decouple the FPGA/PLD from external synchronous hardware by using external
buffer storage

Stabilizing the data

The ideal system is designed such that when data is clocked into a register it is
guaranteed to be stable.

The solution is to clock the data into the Handel-C program more than once, so it is
clocked into one register, and the output of that register is then clocked into another
register. On the first clock edge the data could be changing state so the output could be
metastable for a short time after the clock. However, as long as the clock period is long
relative to the possible metastable period, the second clock edge will clock stable data.
Even more clock edges further reduce the possibility of metastable states entering the
program, however the move from one clock to two clock ticks is the most significant and
should be adequate for most systems.

The example below has 4 clock edges. The first is in the bus_clock_in procedure, and
the next 3 are in the assignments to the variables x, y, and z.

Handel-C Language Reference Manual

www.celoxica.com Page 244

int 4 x,y,z;

interface bus_clock_in(int 4 read) InBus() with

par
{
 while(1)
 x = InBus.read;

 while(1)
 y = x;

 {

 z = y;
 }
}

Designing the system to minimize the problem

Remember to keep the problem in perspective by examining the details of the board to
estimate the probability of metastability. You can use external buffers to stabilize data
from synchronous hardware before it is input to the FPGA.

Techniqu

If using
specificat

If using
stabiliz gh
the circui

Within n
must

 {data = {"P4", "P3", "P2", "P1"}};

es to minimize the problem

 channels to communicate between clock domains, you may use clock
ions to balance speed and metastability issues

 interfaces to communicate between clock domains, you can insert extra
ing flip-flops to reduce the likelihood of metastability being propagated throu

t

Timing constraints used for channels across clock domains

 a single clock tick, data transmitted from another asynchronous clock domai
settle (stop being metastable) and be routed to the next flip flop.

Handel-C Language Reference Manual

www.celoxica.com Page 245

If you are using channels to communicate between clock domains, you can set the timing
constraints which specify how long it is before you sample data (the amount of time for it
to settle) OR the amount of time available for it to move onwards.

The amount of time used for it to settle is known as the resolution time (tres). You can
specify a maximu ion. A sensible
value for re

The amount of ti to get from one flip-
flop to the next minperiod
specification. Th

When you use a channel to communicate across clock domains, synchronization
hardware is built automatically.

m period for this by using the resolutiontime specificat
solutiontime is three-quarters of the clock period.

me left is the amount of time for the control signal
, including all output, setup and routing delays. This is the
is would normally only be used if paranoia is set to 0.

How channels are designed to deal with metastability

tr time to transfer between domains (paranoia in domain B + 1) X tp

tp clock period in domain B

tup unconstrainedperiod

Handel-C Language Reference Manual

www.celoxica.com Page 246

tmp minperiod

The control signals are clocked through a number of flip-flops specified by paranoia. On
each clock edge, the data is moved through another flip-flop, such that it is less likely to
be metastable.

11.6.2 Using interfaces: External resynchronizing example

This example shows the three files required to connect two EDIF blocks (bbA and bbB)
which use different clocks. The small files bbA.hcc and bbB.hcc compile to the EDIF code
using the port_out from and port_in to interfaces. The metastable.hcc file connects
the two together and generates one flip –flop that resynchronizes the data by reading the
value from bbA into a variable.

File: metastable.hcc

Handel-C Language Reference Manual

www.celoxica.com Page 247

/*
* Black box code to resynchronize
* Needs to be clocked from the reading clock
* (i.e. bbB.hcc's clock)
*/

int 1 x;
interface bbA(int 1 from) A();
interface bbB() B(int 1 to=x, unsigned 1 clk = __clock);

set clock = external "P1";
void main(void)
{
 while(1)
 {
 /*
 * stabilize the data by adding resynchronization FF
 */
 x = A.from;
 }
}

File: bbA.hcc

/*
* Domain bbA
* Compiles to bbA.edf
*/
interface port_in(unsigned 1 clk with { clockport = 1 }) clk();
set clock = internal clk.clk;
void main(void)
{
 int 1 y;
 interface port_out() from (int 1 from = y);
}

File: bbB.hcc

Handel-C Language Reference Manual

www.celoxica.com Page 248

/*
*Domain bbB
* Compiles to bbB.edf
*/

set clock = external "P2";
void main(void)
{
 int 1 q;

 interface port_in(int 1 to) to();
 par
 {
 while(1)
 {
 q = to.to; // Read data
 }
 }
}

11.7 Ports: interfacing with external logic

Handel-C provides the interface sorts port_in and port_out. These allow you to have a
set of wires, unconnected to pins, which you can use to connect to a simulated device or
to another function within the FPGA or PLD. Handel-C supplies the interface declaration
for these sorts, and you supply the instance definition.

port_in

For a port_in, you define the port(s) carrying data to the Handel-C code and any
associated specifications.

interface port_in(Type data_TO_hc [with {port_specs}])
 Name() [with {Instance_specs}];

For example:

interface port_in(int 4 signals_to_HC) read();

You can then read the input data from the variable Name.data_TO_hc, in this case
read.signals_to_HC

Handel-C Language Reference Manual

www.celoxica.com Page 249

port_out

For a port_out, you define the port(s) carrying data from the Handel-C code, the
expression to be output over those ports, and any associated specifications.

interface port_out() Name(Type data_FROM_hc =
 output_Expr[with {port_specs}])
 [with {Instance_specs}];

For example:

Example 1:

interface port_in(unsigned 1 soggy) In1();
interface port_in(unsigned 1 soggy) In2();

Example 2:

interface port_in(unsigned 1 soggy) In1();
void main(void)
{
 interface port_in(unsigned 1 soggy) In2();
 ...
}

Both examples build two ports to the top level of the design called soggy. When they
were integrated with external code, the PAR tools wouldn’t know which soggy to use
where.

11.8 Specifying the interface

You can specify your own interface format. This allows you to communicate with code
written in another language such as VHDL, Verilog or EDIF and allows the Handel-C
simulator to communicate with an external plugin program (e.g., a connection to a VHDL
simulator).

int X_out;
interface port_out()
 drive(int 4 signals_from_HC = X_out);

In this case, the width of X_out would be inferred to be 4, as that is the width of the port
that the data is sent to.

Port names

The name of each port in a port_in or port_out interface must be different, as they will
all be built to the top level of the design.

The examples below would both generate a compiler error.

Handel-C Language Reference Manual

www.celoxica.com Page 250

The expected use for this is to allow you to incorporate bought-in or handcrafted pieces
of low-level code in your high-level Handel-C program. It also allows your Handel-C
program code to be incorporated within a large EDIF, VHDL or Verilog program. You can
also use it to communicate with programs running on a PC that simulate external
devices.

To use such a piece of code requires that you include an interface definition in the
Handel-C code to connect it to the external code block. This interface definition also tells
the simulator to call a plugin (which in turn may invoke a simulator for the foreign code).

11.9 Targeting ports to specific tools

When compiling to EDIF, Handel-C has the capacity to format the names of wires to
external logic according to the different syntaxes used by any external components
generated by foreign tools. You can do this using the busformat specification to a port.
This allows you to specify how the bus name and wire number are formatted.

To specify a format, you use the syntax

with {busformat = "formatString"}

formatstring can be one of the following strings. B represents the bus name, and I
represents the wire number.

BI
B_I
B[I]
B(I)
B<I>
B specifies a bus

B[N:0], B<N:0> or B(N:0) specify a bus of width (N+1).

Handel-C Language Reference Manual

www.celoxica.com Page 251

Example format B[I]

interface port_in(int 4 signals_to_HC with
 {busformat="B[I]"}) read();

would produce wires

signals_to_HC[0]
signals_to_HC[1]
signals_to_HC[2]
signals_to_HC[3]

Example format B<I>

ram unsigned 4 rax[4] with
 {ports = 1, busformat="B<I>"};

would produce wires

rax_SPPort_addr<0> // Address
rax_SPPort_addr<1>
rax_SPPort_data_in<0> // Data In
rax_SPPort_data_in<1>
rax_SPPort_data_in<2>
rax_SPPort_data_in<3>
rax_SPPort_data_out<0> // Data Out
rax_SPPort_data_out<1>
rax_SPPort_data_out<2>
rax_SPPort_data_out<3>
rax_SPPort_data_en // Data Enable
rax_SPPort_clk // Clock
rax_SPPort_cs // Chip Select
rax_SPPort_oe // Output Enable
rax_SPPort_we // Data In

Handel-C Language Reference Manual

www.celoxica.com Page 252

12 Object specifications
Handel-C provides the ability to add ‘tags’ to certain objects (variables, channels, ports,
buses, RAMs, ROMs, mprams, clocks, resets and signals) to control their behaviour.
These tags or specifications are listed after the definition of the object using the with
keyword. All specifications can be applied to generic output. Others are only valid for
simulation (Debug or Release) or for hardware output.

When defining multiple objects, the specification must be given at the end of the line and
it applies to all objects defined on that line. For example:

extern unsigned x, y;
unsigned x, y with {show=0};

This attaches the show specification with a value of 0 to both x and y variables.

Specifications can only be applied to the definition of objects, not to declarations:

extern rom unsigned 32 SomeRom[1] with {Spec}; // Wrong; spec applied to de
claration
rom unsigned 32 SomeRom[1]={1} with {Spec}; // OK; spec applied to definiti
on

The with keyword takes one or more of the following attributes.

12.1 Summary of specifications

12.1.1 Compiler atttributes

These specifications are interpreted by the compiler.

Specification Possible
values

Default Applies to Meaning

warn 0, 1 1 variables
memories
channels
interfaces
clocks

Enable warnings for object

extpath Name of port
TO Handel-C
on the same
interface

None port FROM
Handel-C

Specify any direct logic
(combinational logic)
connections to another port

Handel-C Language Reference Manual

www.celoxica.com Page 253

12.1.2 Simulator attributes

These specifications are interpreted by the simulator.

Specification Possible
values

Default Applies to Meaning

show 0, 1 1 variables
channels
o/p
interfaces
tri-state
interfaces

Show variable during
simulation

base 2, 8, 10,
16

10 variables
chanouts
o/p
interfaces
tri-state
interfaces

Print variable in specified
base

infile Any valid
filename

None chanins
i/p
interfaces
tri-state
interfaces

Redirect from file

outfile Any valid
file name

None chanouts
o/p
interfaces
tri-state
interfaces,
variables

Redirect to file

extlib Name of a
plugin
.dll

None interface or
port

Specify external plugin for
simulator

extfunc Name of a
function
within the
plugin

PlugInSet
or
PlugInGet
depending
on port
direction

interface or
port

Specify external function
within the simulator for this
port

extinst Instance
name
(with
optional
parameter
s)

None interface or
port

Specify simulation instance
used

Handel-C Language Reference Manual

www.celoxica.com Page 254

12.1.3 Clock attributes

These specifications apply to a clock, and affect the hardware built in that clock domain.

Handel-C Language Reference Manual

www.celoxica.com Page 255

Specification Possible
Values

Default Applies to Meaning

clockport 0, 1 0 for a
port on an
interface,
1 for a
clock
declaration

ports on
interfaces,
external
clocks

Mark port as
feeding a clock.
When applied to a
generic interface
port, it marks that
port as feeding a
clock. When applied
to an external
clock, it marks that
clock as using a
dedicated clock pin.

minperiod Any time in
nanoseconds

None clocks with
channels to
other clock
domains

minimum period for
place and route
tools to achieve
between flip-flops

paranoia 0 or any
positive
integer
(above 10
causes a
warning)

1 clocks specifies number of
extra flip-flops used
in stabilizing
synchronization
data

rate Any floating-
point
frequency in
MHz

None clocks Minimum frequency
at which the clock
in question should
be capable of
running

resolutiontim
e

Any time in
nanoseconds

None clocks with
channels to
other clock
domains

Time for
metastability to
resolve on channels
into clock domains

retime 0 or 1 1 clocks,
variables

Prevent flip-flops in
a specific clock
domain or
generated by a
variable from being
moved by the
retimer

unconstrained
period

Any time in
nanoseconds

None clocks with
channels to
other clock
domains

Constraint for
compiler-generated
control paths into
clock domain

Handel-C Language Reference Manual

www.celoxica.com Page 256

12.1.4 Channel attributes

This specification defines how channels are built.

Specification Possible values Default Applies to Meaning

fifolength 0 or any positive
integer

0 channel Create FIFO of
specified length

12.1.5 Channel and memory attributes

This specification defines where memories and FIFOs are built.

Specification Possible values Default Applies to Meaning

block "AUTO" for any
device;

"BlockRAM" for
Actel;

"LUT", "EAB",
"M512", "M4K" or
"M-RAM" for Altera;
"BlockRAM" or
"SelectRAM" for
Xilinx

"AUTO" memories
(on-chip)

FIFOs of
two or
more parts

Specify memory
resource type to
use for
RAM/ROM

12.1.6 Memory attributes

These specification defines how memories are built.

Handel-C Language Reference Manual

www.celoxica.com Page 257

Specification Possible
Values

Default Applies to Meaning

offchip 0, 1 0 memories Set RAM/ROM to
be off chip. Cannot
be used in
conjunction with
ports

ports 0, 1 0 memories Set RAM/ROM to
be in external
code. Cannot be
used in
conjunction with
offchip

wegate -1, 0, 1 0 RAMs Place write enable
signal

westart in multiples of
0.5 to (clock
division -0.5)

None RAMs Position write
enable signal

welength in multiples of
0.5 to clock
division

None RAMs Set length of write
enable signal

rclkpos in multiples of
0.5 to (clock
division -0.5)

None memories Set read cycle
position of SSRAM
clock

wclkpos in multiples of
0.5 to (clock
division -0.5)

None memories Set write cycle
position of SSRAM
clock

clkpulselen in multiples of
0.5 to clock
division

None memories Set pulse length of
SSRAM clock

clk Any valid pin
list

None memories
(off-chip)

Set pins for
external RAM or
ROM clock

addr Any valid pin
list

None memories
(off-chip)

Set address pins

oe Any valid pin
list

None memories
(off-chip)

Set output enable
pin(s)

we Any valid pin
list

None RAMs
(off-chip)

Set write enable
pin(s)

cs Any valid pin
list

None memories
(off-chip)

Set chip select
pin(s)

Handel-C Language Reference Manual

www.celoxica.com Page 258

12.1.7 Interface and memory attributes

This specification defines how interfaces and memory connections are built.

Specification Possible
Values

Default Applies to Meaning

speed 0, 1, 2

(Actel
ProASIC
only)

2 for Actel
ProASIC
and
ProASIC+

o/p or tri-
state
interfaces

Set buffer speed

 0, 1

(Altera and
Xilinx)

1 for
Altera and
Xilinx
Virtex,
Spartan-
II/IIE/3/3E
/3L series

intime Any floating-
point delay
(ns)

None input port or
interfaces or
tri-state
interfaces

external RAMs

Maximum
allowable delay
between interface
and variable

outtime Any floating-
point delay
(ns)

None output port or
interfaces or
tri-state
interfaces

external RAMs

Maximum
allowable delay
between variable
and interface

standard Specified
keywords
representing
I/O standards

LVCMOS33
for
ProASIC /
ProASIC+
LVTTL for
other
devices

any external
interface or
external clock
(dependent on
FPGA type),
and off-chip
memories

I/O standard used
(electrical
characteristics)

strength 2, 4, 6, 8,
12, 16, 24
(mA)

Various,
refer to
device
datasheets

external
interfaces and
off-chip
memories

Signal strength.

 OR

 0 (Min), -1
(Max)

Handel-C Language Reference Manual

www.celoxica.com Page 259

dci 0, 0.5, 1 0 (No DCI) external
interfaces and
external
clocks (Virtex-
II, Virtex-II
Pro and
Spartan-
3/3E/3L only)
and off-chip
memories

Digital control
impedance
enabled (only valid
with some
standards)

busformat Format string BI generic
interfaces,
port-type
interfaces and
ports to
memories in
external logic

Specify the way
that wire names
are formatted in
EDIF

pull 0, 1 None Xilinx and
ApexII
interfaces

Add pull up or pull
down resistor(s)

data Any valid pin
list

None memories
interfaces

Set data pins

12.1.8 Interface attributes

These specifications defines how interfaces are built.

Handel-C Language Reference Manual

www.celoxica.com Page 260

Specification Possible
values

Default Applies to Meaning

bind 0,1 0 interface,
port

Bind component to
work library

buffer string
value

Depends on
target
architecture
and type of
interface

bus-type
interfaces,
external
clocks &
resets

In EDIF: specify
type of buffer to
build

properties string-
value
pair OR
string-
value-
string
triplet

None generic
interfaces

In EDIF:
Parameterize
instantiations of
external black
boxes

In VHDL: Define
generics

In Verilog: Define
parameters

quartus_proj_assign string-
value
pair

None bus-type
interfaces,
offchip RAM

In EDIF: specify
Quartus project
pins assignments

sc_type string-
value

bool for 1
bit wide
ports, uint
otherwise

port_in,
port_out or
generic
interfaces

Create a SystemC
port of a specified
type

vhdl_type string-
value

std_logic
for 1 bit
wide ports,
unsigned
otherwise

port_in,
port_out or
generic
interfaces

Create a VHDL port
of a specified type

12.1.9 Examples

Specifications can be added to objects as follows:

unsigned 4 w with {show=0};
int 5 x with {show=0, base=2};
chanout char y with {outfile="output.dat"};
chanin int 8 z with {infile="input.dat"};
interface bus_clock_in(int 4 in) InBus() with
 { pull = 1, data = {"P4", "P3", "P2", "P1"} };

Handel-C Language Reference Manual

www.celoxica.com Page 261

12.2 base specification

The base specification may be given to variable, output channel, output bus and tri-state
bus declarations. You can only use it for simulation output (Debug or Release). The value
that this specification is set to tell the Handel-C compiler which base to display the value
of the object in. Valid bases are 2, 8, 10 and 16 for binary, octal, decimal and
hexadecimal respectively.

The default value of this specification is 10. If you write with {base = 0} this is
equivalent to not specifying a base.

Example

int 5 x with {base=2};

12.3 bind specification

The bind specification may be given to a user-defined interface that connects to a
component in external logic. It only has meaning when instantiating an external block of
code from Handel-C generated VHDL or Verilog. If bind is set to 1, it is assumed that the
definition of the component exists in HDL elsewhere. If it is set to 0, it does not and the
component is assumed to be a black box.

In VHDL, setting bind to 1 instantiates the component and generates a declaration of
this component of which the definition is assumed to be within the work library. Setting
bind to 0 (default) instantiates the component and generates a black box component
declaration.

In Verilog, setting bind to 1 instantiates the component but does not declare it. Setting
bind to 0 instantiates the component and generates a black box component declaration.
This black box component declaration is an empty module, which merely describes the
interfaces of the component.

VHDL example 1: with bind set to 0:

interface Bloo(unsigned 1 myin)
 B(unsigned 1 myout = x) with {bind = 0};

results in Handel-C generating this VHDL instantiation of the Bloo component:

component Bloo
port (
 myin : out std_logic;
 myout : in std_logic
);
end component;

Handel-C Language Reference Manual

www.celoxica.com Page 262

VHDL example 2: with bind set to 1:

interface Bloo(unsigned 1 myin)
 B(unsigned 1 myout = x) with {bind = 1};

results in Handel-C generating this VHDL instantiation/declaration of the Bloo
component:

component Bloo
port (
 myin : out std_logic;
 myout : in std_logic
);
end component;
for all : Bloo use entity work.Bloo;

In this case Bloo is bound to the work library.

Verilog example 1: with bind set to 0:

interface Bloo(unsigned 1 myin)
 B(unsigned 1 myout = x) with {bind = 0};

results in Handel-C generating this Verilog instantiation of the Bloo component:

module Bloo;
 input myin;
 output myout;
endmodule;

module MyModule;
 ...
 wire a, b;
 ...
 Bloo MyInstance (.myin(a), .myout(b));
 ...
endmodule;

Note that the code includes a black box declaration of Bloo.

Verilog example 2: with bind set to 1:

interface Bloo(unsigned 1 myin) B(unsigned 1 myout = x) with {bind = 1};

results in Handel-C generating this Verilog instantiation of the Bloo component:

Handel-C Language Reference Manual

www.celoxica.com Page 263

module MyModule;
 ...
 wire a, b;
 ...
 Bloo MyInstance (.myin(a), .myout(b));
 ...
endmodule;

(The VHDL or Verilog synthesizer expects the declaration of Bloo to be provided in
another block of HDL.)

12.4 block specification

The block specification may be given to a RAM or ROM declaration, for EDIF, VHDL or
Verilog output. The block specification may also given to channels where fifolength is
2 or greater.

The specification takes a string to specify the type of block memory required. Possible
values are:

• Actel devices: "BlockRAM"

• Altera devices: "LUT", "EAB", "M512", "M4K", "M-RAM" ("EAB" should be used
for both EABs and ESBs)

• Xilinx devices: "SelectRAM", "BlockRAM"

• All devices: "AUTO". This is the same as not using the block specification, but
can be used as a placeholder to pass in an active value.

For example:

ram int 8 a[15][43] with {block = "BlockRAM"};

chan <unsigned 1> ch with {fifolength=15, block ="SelectRAM"};

If you want to build a ROM from look-up tables (distributed memory) in Altera devices,
you need to declare the ROM with {block = "LUT"}.

"M512", "M4K" and "M-RAM" are used to specify memory blocks in Stratix and Cyclone
devices.

 The block specification has changed since DK1.1, although the old method,
using block = 1 to specify block RAMs, is still supported for backward
compatibility.

Handel-C Language Reference Manual

www.celoxica.com Page 264

Issues with Xilinx Virtex, VirtexE and Spartan-IIE

Due to the pipelined nature of Virtex and Spartan-IIE block RAM, if you attempt to read
from one bank of block RAM and write the value into another on a single cycle, the value
read is the value in block RAM on the previous clock cycle, not the current cycle.

Code example with timing issues

static ram unsigned 8 RAM1[4] = {0,1,2,3} with {block="BlockRAM"};
ram unsigned 8 RAM2[4] with {block="BlockRAM"};
signal s;
unsigned x;
unsigned i;

while(1)
{
 par
 {
 s = RAM1[i];

g edge. x is written to

 of RAM1[i].

 specifications to set

 RAM2[i] = s;
 x = s;
 i++;
 }
}

 Here, x and RAM2[i] get different values. s changes on the fallin
on the rising edge. RAM2[i] is written to on the falling edge.

Therefore, RAM2[i] gets the value of RAM1[i-1] and x gets the value

To alter this, you must use the rclkpos, wclkpos and clkpulselen
the RAM clock cycle positions.

Handel-C Language Reference Manual

www.celoxica.com Page 265

Solution to timing problem

//divide CLK by four to give Handel-C clock
set clock = external_divide "C1" 4;

static ram unsigned 8 RAM1[4] = {0,1,2,3} with {block = "BlockRAM",
 rclkpos = {1.0},
 wclkpos = {3.5},
 clkpulselen = 0.5,
 westart = 3.0,
 welength = 1.0};

ram unsigned 8 RAM2[4] with {block = "BlockRAM",
 rclkpos = {1.0},
 wclkpos = {3.5},
 clkpulselen = 0.5,
 westart = 3.0,
 welength = 1.0};

Handel-C Language Reference Manual

www.celoxica.com Page 266

HCLK initiates the parallel read from and write to the different blocks of RAM.

The settings of rclkpos and clkpulselen delay the read cycle until the address is stable.
(Read clock pulse 1 CLK pulse after HCLK, held for 0.5 CLK pulses).

The settings of wclkpos and clkpulselen delays the write cycle until after the data has
been read and is stable. The settings of westart and welength position the write enable
appropriately.

12.5 buffer specification

The buffer specification can be applied to all bus-type interfaces and external
clock/reset declarations. It accepts a string, and it specifies the type of buffer that should
be built on the corresponding interface. "None" may be used to specify that no buffer
should be built.

Example 1:

interface bus_in(unsigned 3 i) I() with {buffer = "IBUFG"};
builds a standard bus_in interface, where the buffer is of type IBUFG, specifying that the
bus_in should feed a global buffer (for Xilinx) instead of a basic input buffer (for
connecting to DCMs, for instance).

Example 2:

interface bus_in(unsigned 3 i) I() with {buffer = "None"};
builds a standard bus_in interface with no buffer. That is, any logic reading from I.i
will be fed by pins directly.

Example 3:

set clock = external with {buffer = "GL25LP"};
specifies that the clock should use a low-power clock buffer for Actel.

Where no buffer spec is used, the default buffer type is used.

12.6 busformat specification

The busformat specification may be given to

• generic and port-type (port_in and port_out) interfaces (but not bus-type
interfaces)

• port memories (memories using with {ports = 1} to connect to external
code)

busformat specifications are ignored for VHDL and Verilog output and for bus-type
interfaces (bus_in, bus_ts etc).

Handel-C Language Reference Manual

www.celoxica.com Page 267

When compiled to EDIF, the busformat string defines the format of the wire names. Valid
values for the busformat string are

BI B_I B[I] B(I) B<I>

B represents the bus name and I the wire number. The default format is BI

If you want to specify a single port for the entire bus, use

B B[N:0] B<N:0> B(N:0)

B specifies a bus without specifying a width and B[N:0] and B<N:0> specify a bus of
width (N +1). A 6-bit port could therefore be generated as port, port[5:0]or
port<5:0> depending on the value of busformat.

 If data specifications are used with busformat, they are ignored and a
warning is issued.

You can place the busformat specification after any port, or at the end of an interface
statement. If you place a specification at the end of the interface declaration, it will apply
to all ports in the declaration, except for any ports that have their own specification. For
example:

interface Bloo (unsigned 4 in)
 InstBloo (unsigned 4 out = x
 with {busformat = "BI"})
 with {busformat = "B(I)"};
 // first port has spec B(I) and second port has spec BI

If you want to apply a busformat specification to a 1-bit wide bus, you need to place the
specification after the port. If the specification is applied to the whole interface, it will be
ignored for any 1-bit wide buses in the interface (to enable these to be used as signals
etc.).

Examples

interface port_in(int 4 signals_to_HC with {busformat="B[I]"}) read();

creates four ports named signals_to_HC[0], signals_to_HC[1], signals_to_HC[2]
and signals_to_HC[3].

interface port_in(unsigned 6 myvar) MyFunction()
 with {busformat = "B[N:0]"};

creates a single 6-bit port: myvar[5:0].

Handel-C Language Reference Manual

www.celoxica.com Page 268

unsigned 6 x;
interface ExtThing(unsigned 6 myvar)
 Inst1ExtThing(unsigned 6 anothervar = x)
 with {busformat = "B[N:0]"};

creates two ports: myvar[5:0] and anothervar[5:0].

interface ExtThing(unsigned 5 a,
 unsigned 1 b with {busformat = "B[I]"},
 unsigned 1 c)
 InstExtThing(unsigned 6 d)
 with {busformat = "B[I]"};

In this example, the busformat specification is applied to ports a and d, because they are
more than 1-bit wide, and to port b, as this has an individual busformat specification,
but not to port c as this is 1-bit wide and does not have an individual busformat
specification.

12.7 Specifying the clock pin for SSRAM

The clk specification is used for external SSRAM or ROM declarations, for EDIF, VHDL or
Verilog output. It specifies the pin(s) that carry the RAM/ROM clock to the external
SSRAM/ROM. To use this specification, you must be using the external_divide or
internal_divide clock types with a division factor of 2 or more, and you must use the
wclkpos, rclkpos and clkpulselen specifications to define the clock that will appear at
the specified pin(s).

Handel-C Language Reference Manual

www.celoxica.com Page 269

Example

set clock = external_divide "C1" 4;

ram unsigned 4 ExtSyncMem[32] with
{
 offchip = 1,
 wclkpos = {2.5},
 rclkpos = {2.5},
 clkpulselen = 1,
 clk = {"P22"},
 westart = 2,
 welength = 1,
 we = {"P23"},
 cs = {"P24"},
 oe = {"P25"}
};

void main(void)
{
 static unsigned index;
 static unsigned data;

 ExtSyncMem[index] = data;
 etc...

 data = ExtSyncMem[index];
 etc...

 appears

The clockport specification can be used when declaring a port on an interface, or when
declaring a clock. You can use it for EDIF, VHDL or Verilog output.

Port declaration

You can use the clockport specification to indicate that a port on an interface is used to
drive a clock in the Handel-C design. This is useful when the clock for the Handel-C
design originates in an external 'black box' component. For example

}

The clock pattern defined by the wclkpos, rclkpos and clkpulselen specifications
appears at pin "P22". The write enable strobe defined by westart and welength
at pin "P23".

12.8 clockport specification

Handel-C Language Reference Manual

www.celoxica.com Page 270

unsigned 1 En;
interface BlackBox(unsigned 1 CLK with {clockport=1})
 Instance(unsigned 1 Enable = En);

set clock = internal Instance.CLK;

 If you don't use the clockport specification you may end up with
combinational loops.

Clock declaration

You can use the clockport specification, with {clockport=1}, when declaring external
clocks to assign the clock to a dedicated clock input resource on the target device.

If you apply the clockport specification to Xilinx Virtex parts, you can use it to specify a
particular "input" clock buffer.

If clockport is set to 0, the clock is assigned to a pin that is not a dedicated clock input
and the I/O standard and dci specifications are not available.

Example clock declarations

set family = XilinxVirtexII;
set clock = external with {standard = "LVCMOS33", dci = 1};
OR

set family = XilinxVirtexII;
set clock = external with {clockport = 1, standard = "LVCMOS33", dci = 1};

both instruct the compiler to build an external clock interface, using a dedicated Virtex-II
clock input (IBUFG) resource. That is, the clock interface logic built will be:

set family = XilinxVirtexII;
set clock = external with {clockport = 0, standard = "LVCMOS33", dci = 1};

Handel-C Language Reference Manual

www.celoxica.com Page 271

This instructs the compiler to build an external clock interface, without using a dedicated
Virtex-II clock input resource. That is, the clock interface logic built will be:

12.9 data specification (pin constraints)

The data specification can be used to constrain pin location or to name ports:

• When applied to bus-type interfaces or off-chip memories, data specifies pin
locations as a list of pin numbers separated by commas. If you are using a
differential I/O standard, the pins must be specified as pairs enclosed in
braces.

• When applied to foreign code memories (using with {ports=1}), port-type
interfaces and generic interfaces, data specifies port names as a list of names
separated by commas

If the data specification is omitted for bus-type interfaces or off-chip memories, the
place and route tools will assign the pins. The pins are listed in order MSB to LSB, but the
LSB pin (rightmost element of list) is assigned first. If you do not assign all the pins
used, the MSB pins remain unassigned.

If you are targeting EDIF output, the data specification can also be used for a port_in or
port_out interface to specify the names of the ports to be exported. (This part of the
data specification is ignored for VHDL or Verilog output.)

If you are compiling your Handel-C code to VHDL or Verilog, you can only use the data
specification to constrain pin locations for Precision and Synplify style outputs. If you
compile for ModelSim or Active-HDL, the data specification is ignored. In Precision VHDL
or Verilog output styles, pin constraints are implemented using the pin_number attribute.
In Synplify-style output, pin constraints are implemented using the loc attribute.

 If the busformat specification is used as well as data specifications for port-
type or generic interfaces, the data specifications are ignored and a warning is
issued.

Handel-C Language Reference Manual

www.celoxica.com Page 272

Bus-type interface example

macro expr dataPins = {"P3", "P2", "P1", "P0"};
interface bus_in(unsigned 4 inPort) hword()
 with {data = dataPins, intime = 5};

Port-type interface example

macro expr dataInNames = {"I3", "I2", "I1", "I0"};
macro expr dataOutNames = {"O3", "O2", "O2", "O1"};

unsigned 4 x;
interface port_in(unsigned 4 in) Ig()
 with {data = dataInNames};
interface port_out() Og(unsigned 4 out = x)
 with {data = dataOutNames};

Generic interface example

macro expr dataInNames = {"I3", "I2", "I1", "I0"};
macro expr dataOutNames = {"O3", "O2", "O2", "O1"};

unsigned 4 x;
interface Igator
 (
 unsigned 4 in with {data = dataInNames}
)
 InstIgator
 (
 unsigned 4 out = x with {data = dataOutNames}
);

12.10 dci specification

The dci specification may be used with the standard specification on external bus
interfaces connected to pins (not port_in or port_out) to select whether Digital
Controlled Impedance is to be used on all pins of that interface. You can also use it with
the standard specification when declaring external clocks. The dci specification may also
be applied to off-chip memories. The specification is only valid for EDIF, and is ignored
for all other outputs.

The only devices that currently support DCI are Xilinx Virtex-II, Virtex-II Pro, Virtex-4
and Spartan-3/3E/3L. For more information on DCI, please refer to the Xilinx Data Book.

If you have used the clockport specification and set it to 0, dci specifications will be
ignored. (The default for clockport is 1.)

Handel-C Language Reference Manual

www.celoxica.com Page 273

Standards supporting dci are:

GTL GTL+

HSTL Class I HSTL Class II HSTL Class III HSTL Class
IV

LVCMOS33 LVCMOS25 LVCMOS18 LVCMOS15

SSTL2 Class I SSTL2 Class II SSTL3 Class I SSTL3 Class
II

The possible values for the dci specification are:

0 No DCI (default)

1 DCI with single termination

0.5 DCI with split termination. This can only be used
with LVCMOS standards.

 If dci is used on a device or standard that does not support it, a warning is
issued and the specification is ignored.

Examples

// Use dci on all pins
interface bus_out() Eel(int 4 outPort = x)
 with {data = dataPinsO, standard = "HSTL_I", dci=1};

//Use dci for clock pin
set clock = external "C1" with {standard = "HSTL_III", dci=1};

12.11 extinst, extlib, extfunc specifications

The extlib, extfunc and extinst specifications are used when connecting a Handel-C
interface to a simulation .dll. There is a default value for extfunc, but extlib and
extinst must both be specified.

Handel-C Language Reference Manual

www.celoxica.com Page 274

Specification Possible
values

Default Meaning

extlib Name of a
plugin .dll

None Specify external plugin for simulator

extfunc Name of a
function within
the plugin

PlugInSet or
PlugInGet
depending on
port direction

Specify external function within the
simulator for this port

extinst Instance name
(with optional
parameters)

None Specify simulation instance used

extlib

extlib takes the name of a .dll. It specifies that the named .dll plugin will be
connected to the port or interface.

extfunc

extfunc specifies the name of an external function within the .dll.

On output ports, this function is called by the simulator to pass data from the Handel-C
simulator to the plugin (default PlugInSet). It is guaranteed to be called every time the
value on the port changes but may be called more often than that.

tion is called by the simulator to get data from the plugin
 is guaranteed to be called at least once every clock cycle.

which is passed to the PlugInOpenInstance function within the
be passed to the .dll instance, they can be done so in the

of the plugin will be generated for each unique extinst string.

Examples

interface bus_out() MyBusOut(outPort=MyOutExpr) with
 {extlib="pluginDemo.dll", extinst="0", extfunc="MyBusOut"};

interface TTL7446(unsigned 7 segments, unsigned 1 rbon)
 decode(unsigned 1 ltn=ltnVal, unsigned 1 rbin=rbinVal,
 unsigned 4 digit=digitVal, unsigned 1 bin=binVal)
 with {extlib="PluginModelSim.dll",
 extinst="decode; model=TTL7446_wrapper; delay=1"};

On input ports, this func
(default PlugInGet). It

extinst

extinst takes a string,
plugin. If parameters must
string. A new instance

Handel-C Language Reference Manual

www.celoxica.com Page 275

12.12 extpath specification

The extpath specification is used when connecting a Handel-C interface to external
(black-box) logic. It is valid for any DK output.

extpath is used during simulation to tell the simulator about ports within the black box,
so that it knows what order to update the ports in. It specifies that a Handel-C output
port on an interface will have direct logic connections via the black box to one or more
input ports on the same interface.

Its usage is

portName with {extpath={portNameList}}

portNameList is a comma-separated list of port names.

Example

interface blackBox
 (int 1 Two, int 1 Four)
 bb1(int 1 One = out with {extpath = {bb1.Two}},
 int 1 Three = bb1.Two with {extpath={bb1.Four}});

This example tells the compiler that there are direct connections within the black box
between ports 1 and 2, and between ports 3 and 4. The interface also specifies an
external connection from port 2 to port 3 (this connection is outside the black box).

12.13 fifolength specification

The fifolength specification converts a channel into a FIFO of the given length. If
fifolength is two or greater the block specification can be used.

If fifolength is not a power of 2, and the paranoia specification is 0 or 1 (default), the
FIFO will be created with low latency, else it will be created with a higher latency.

Example

int 8 chan_FIFO with {fifolength = 7, block = "MK4"}
//creates a FIFO in Altera Cyclone block RAM

Handel-C Language Reference Manual

www.celoxica.com Page 276

12.14 infile and outfile specifications

The infile specification may be given to chanin, port_in, port_out, bus_in,
bus_latch_in, bus_clock_in, bus_ts, bus_ts_latch_in and bus_ts_clock_in
declarations. The outfile specification may be given to chanout, bus_out, bus_ts,
bus_ts_latch_in and bus_ts_clock_in declarations. The strings that these
specifications are set to will inform the simulator of the file that data should be read from
(infile) or the file that data should be written to (outfile).

Note that when applying the outfile specification, it should not be given to multiple
channels. For example, the following declarations are allowed, but it would be better to
place them in separate files to avoid undefined results:

chanout int x, y with {outfile="out.dat"};
chanout unsigned a, b with {outfile="out.dat"};

The filename passed to infile and outfile is a standard string and follows all string
rules, including the need to specify the backslash character as '\\'.

12.15 intime and outtime specifications

The intime specification may be given to an input port or bus, tri-state bus, foreign code
memory or off-chip memory. The outtime specification may be given to an output port
or bus, tri-state bus, foreign code memory or off-chip memory. The specifications are
only valid for EDIF output.

intime specifies the maximum delay in ns allowed between an interface or memory
interface and the sequential elements it feeds. outtime specifies the maximum delay in
ns allowed between an interface or memory interface and the sequential elements it is
fed from. They can be floating-point numbers. For example:

macro expr memoryPins = {"P13", "P12", "P11",
 "P10", "P9", "P8", "P7", "P6"};
macro expr dataPins = {"P4", "P3", "P2", "P1"};

interface bus_in(unsigned 4 dataIn) hword()
 with {data = dataPins, intime = 5};
interface port_out()
 new_hword(unsigned 4 out = hword.dataIn + 1)
 with {outtime = 5.2};
ram int 8 a[15][43] with {outtime = 5.2,
 offchip = 1,
 data = memoryPins};

When applied to Actel ProASIC devices, intime and outtime specifications cause Handel-
C to generate a GCF file for the design. When an Altera device is the target, Handel-C
generates ACF or TCL files. When applied to Xilinx chips, Handel-C generates a a Netlist

Handel-C Language Reference Manual

www.celoxica.com Page 277

Constraints File (NCF). These files are used by the place-and-route tools to constrain the
relevant paths.

12.16 Timing constraints example

This example shows the use of the rate specification and the intime and outtime
specifications to constrain a design for speed. The use of these specifications causes the
generation of a timing constraints file (with the type of file determined by the target
platform).

The design is constrained for a clock speed of 40MHz, with input data from two sources,
taking a maximum of 5.5 and 5.0 nanoseconds, and output data taking a maximum of 4
nanoseconds to transmit.

Handel-C Language Reference Manual

www.celoxica.com Page 278

// Clock
set clock = external "C13" with {rate = 40};

// Data path width
macro expr OpWidth = 8;

// Data pins
macro expr DataInA = {"D5","C5","E7","G8","H9","A5","A6","B5"};
macro expr DataInB = {"B6","D7","F8","E8","G9","F9","G10","H10"};
macro expr DataOut = {"B12","D12","D13","F13","G13","H13","H14","C14"};

// Data In/Out timing requirements
macro expr InTimeRequirementA = 5.5;
macro expr InTimeRequirementB = 5.0;
macro expr OutTimeRequirement = 4;

// Input data
interface bus_in(unsigned OpWidth dina) DINA() with
{
 data = DataInA,
 intime = InTimeRequirementA
};
interface bus_in(unsigned OpWidth dinb) DINB() with
{
 data = DataInB,
 intime = InTimeRequirementB
};

// Output data
unsigned result;
interface bus_out() DOUT(unsigned OpWidth dout = result) with
{
 data = DataOut,
 outtime = OutTimeRequirement
};

// Main program - pipelined multiplier
void main(void)
{
 unsigned xx[OpWidth];
 unsigned yy[OpWidth];
 unsigned rr[OpWidth];

Handel-C Language Reference Manual

www.celoxica.com Page 279

 while (1)
 {
 par
 {

 /*

 */

 {

 }

 // Update result
 result = rr[OpWidth-1];
 }
 }
}

 // Read operands from input interfaces
 xx[0] = DINA.dina;
 yy[0] = DINB.dinb;
 rr[0] = xx[0][0] ? yy[0] : 0;

 * Replicator: generates the pipeline stages of
 * the long multiplier, which are done in parallel.

 par (Stage=1; Stage<OpWidth; Stage++)

 xx[Stage] = xx[Stage-1] >> 1;
 yy[Stage] = yy[Stage-1] << 1;
 rr[Stage] = rr[Stage-1] + (xx[Stage][0] ? yy[Stage] : 0);

Handel-C Language Reference Manual

www.celoxica.com Page 280

12.17 minperiod specification

The minperiod specification specifies the maximum delay in nanoseconds between flip-
flops in a synchronizer. including output delay, setup time and skew at either end). Its
value must be less than the clock period.

The higher the value for minperiod, the less time will be available within a clock tick for
control signals to stabilize (resolutiontime). You may set the value of minperiod or
resolutiontime, but not both. If paranoia has been set to 0, you should use
minperiod.

PERIODS WITH PARANOIA AT ITS DEFAULT OF 1

Handel-C Language Reference Manual

www.celoxica.com Page 281

tmp minperiod

tup unconstrainedperiod

tp clock period

PARANOIA SET TO 0

is case, it is possible that the control signal may be metastable within the first
f minperiod is inadequate, the metastability may be propagated into

 offchip specification

PERIODS IF

In th flip-
flop, and i the rest
of the circuit.

12.18

The offchip specification may be given to a RAM or ROM declaration (you cannot have
offchip MPRAMs). When set to 1, the Handel-C compiler builds an external memory
interface for the RAM or ROM using the pins listed in the clk, addr, data, cs, we and oe
specifications. When set to 0, the Handel-C compiler builds the RAM or ROM on the FPGA
or PLD and ignores any pins given with other specifications. You can use the offchip
specification for EDIF, VHDL or Verilog output.

The compiler generates an error if the ports and offchip specification are both set to 1
for the same memory.

You cannot initialize an offchip RAM.

Example

ram int 8 a[15][43] with {offchip = 1};

Handel-C Language Reference Manual

www.celoxica.com Page 282

12.19 paranoia specification

The paran
hardware fo the
higher t
adequa 0, but the
circuit

Circuit wi

The di
synchroni enable

oia specification controls the number of flip-flops used in synchronization
r channels across clock domains. The higher the value for paranoia,

he stability and latency of the channels. The default is 1, which should be
te in most cases. If latency is an issue, it is possible to set paranoia to

 is more likely to be metastable.

th paranoia set to default of 1

agram below shows a circuit with paranoia set to 1. In this case the
zation data goes through one extra flip flop before generating the clock

signal for the register.

TIMES WITH PARANOIA AT ITS DEFAULT OF 1

tr time to transfer between domains (paranoia +1) x tp

tup unconstrainedperiod

tmp minperiod

tp clock period

Handel-C Language Reference Manual

www.celoxica.com Page 283

Circuit showing constraints if paranoia is set to 0

TIMES WITH PARANOIA SET TO 0

12.20 Pin specifications

The addr, data, we, cs and oe specifications each take a list of device pins and are
used to define the connections between the FPGA/PLD and external devices. The
specifications only have meaning for EDIF, VHDL and Verilog output. If the specifications
are omitted, the place and route tools will assign the pins. The specifications apply to the
following objects:

Specification Meaning Input
bus

Output
bus

Tri-state
bus

RAM ROM

addr Address pins - - - • •

data Data pins • • • • •

we Write Enable pin - - - • -

cs Chip Select pin - - - • •

oe Output Enable
pin

 - - - • •

clk Clock pin - - - • •

Pin lists are always given in the order most significant to least significant. Multiple write
enable, chip select and output enable pins can be given to allow external RAMs and ROMs
to be constructed from multiple devices. For example, when using two 4-bit wide chips to
make an 8-bit wide RAM, the following declaration could be used:

Handel-C Language Reference Manual

www.celoxica.com Page 284

ram unsigned 8 ExtRAM[256]
 with {offchip=1,
 addr={"P1", "P2", "P3", "P4", "P5", "P6", "P7", "P8"},
 data={"P9", "P10", "P11", "P12", "P13", "P14", "P15", "P16"},
 we={"P17", "P18"},
 cs={"P19", "P20"},
 oe={"P21", "P22"}
};

12.21 ports specification

The ports specification may be given to a RAM, ROM or MPRAM declaration and is valid
for EDIF, VHDL and Verilog output. When set to 1 the compiler builds an external
memory interface, allowing you to connect to dedicated memory resources on an
FPGA/PLD or to connect to RAMs in external code. You can only use "simple" types for
memories with the ports specification (e.g. int, unsigned; not array or struct).

The compiler generates an error if the ports and offchip specification are both set to 1
for the same memory. All other specifications can be applied.

If you use the ports specification with an MPRAM, a separate interface will be generated
for each port.

You cannot initialize a memory that uses the ports specification.

Examples

mpram
{
 ram <unsigned 8> ReadWrite[256]; // Read/write port
 rom <unsigned 8> Read[256]; // Read only port
} Joan with {ports = 1, busformat = "B<I>"};

generates EDIF ports with names prefixed by Joan_Read and Joan_ReadWrite. For
example:

(interface
 (port Joan_Read_addr<0> (direction INPUT))
 (port Joan_Read_addr<1> (direction INPUT))

(interface
 (port Joan_ReadWrite_addr<0> (direction INPUT))
 (port Joan_ReadWrite_addr<1> (direction INPUT))

Handel-C Language Reference Manual

www.celoxica.com Page 285

12.22 properties specification

The properties specification can be given to generic interfaces.

If you are generating EDIF, it is used to parameterize instantiations of external black
boxes. Each valid property is propagated through to the EDIF netlist as an EDIF property.

If you are generating VHDL or Verilog, the result of the properties specification depends
on the value of the bind specification. When the bind specification has a value of 1, it is
used to define generics (VHDL) or parameters (Verilog) when creating a user-defined
interface to an existing VHDL or Verilog code block. When the bind specification is 0, the
properties specification is used to define attributes for black boxes.

Properties are specified as a list of property items, where each item comprises two or
three values:

{property_name, property_value [, property_type]}

• property_name is a string

• property_value can be a string or an integer

• property_type is optional, with 3 possible values (all strings): "integer",
"boolean" or "string"

If your property is a boolean, you need to specify 0 (false) or 1 (true) as the property
value, and specify "boolean" as the type.

If your property is an integer or string, the type can be inferred from the property value
and you do not need to specify it.

Compiler warnings are issued if illegal values are entered, or if there is a mismatch
between the property type and property value.

EDIF Example

unsigned 6 x;
interface ExtThing(unsigned 6 myvar)
 Inst1ExtThing(unsigned 6 anothervar = x)

 with {properties = {{"LPM_TYPE", "LPM_RAM_DQ"},

 {"LPM_WIDTH", 6, "integer"}}, busformat = "B[N:0]"};

This interface will generate an EDIF block with the following EDIF properties: LPM_TYPE
and LPM_WIDTH.

Handel-C Language Reference Manual

www.celoxica.com Page 286

VHDL/Verilog example (bind = 1)

interface ExtThing (unsigned 6 myvar)
 Inst1ExtThing(unsigned 6 anothervar = x)
 with {bind = 1,
 properties = {{"prop1", 0, "integer"},
 {"prop2", "SomeString", "string"},
 {"prop3", 0, "boolean"},
 {"prop4", 1, "boolean"}}};

For Verilog, this interface will generate the instantiation:

 ExtThing #(O, // prop1
 "SomeString", // prop2
 0, // prop3
 1) // prop4
 InstanceN (.anothervar(x_Out),
 .myvar(W_10))

For VHDL, the interface will generate the following component declaration:

 component ExtThing
 generic (
 prop1 : integer := 0;
 prop2 : string := "SomeString";
 prop3 : boolean := false;
 prop4 : boolean := true
);
 port (
 anothervar : in unsigned(5 downto 0);
 myvar : out unsigned(5 downto 0)
);
end component;

and the following component instantiation:

 InstanceN : ExtThing
 generic map (prop1 => 0,
 prop2 => "SomeString",
 prop3 => false,
 prop4 => true)
 port map (anothervar => x_Out,
 myvar => globals_W_10
);

Handel-C Language Reference Manual

www.celoxica.com Page 287

VHDL/Verilog example (bind = 0)

When the bind specification has a value of 0, attributes are produced instead of generics
or parameters, for example:

interface ExtThing (unsigned 6 myvar)
 Inst1ExtThing(unsigned 6 anothervar = x)
 with {bind = 0,
 properties = {{"prop1", 0, "integer"},
 {"prop2", "SomeString", "string"},
 {"prop3", 0, "boolean"},
 {"prop4", 1, "boolean"}}};

For Verilog and Precision as an output style, this interface will generate a module
instantiation with the following Precision attributes:

 // pragma attribute InstanceN prop1 0
 // pragma attribute InstanceN prop2 SomeString
 // pragma attribute InstanceN.prop3 0
 // pragma attribute InstanceN prop4 1

For VHDL, the interface will generate a component instantiation with the following VHDL
attributes:

 attribute prop1: integer;
 attribute prop2: string;
 attribute prop3: boolean;
 attribute prop4: boolean;
 attribute prop1 of InstanceN : label is 0;
 attribute prop2 of InstanceN : label is "SomeString";
 attribute prop3 of InstanceN : label is false;
 attribute prop4 of InstanceN : label is true;

 For Verilog the properties specification with a bind specification value of 0 is
only supported for Precision output style

12.23 pull specification

The pull specification may be given to an input or tri-state bus. It is only valid for EDIF
output. When set to 1, a pull up resistor is added to each of the pins of the bus. When

Handel-C Language Reference Manual

www.celoxica.com Page 288

set to 0, a pull down resistor is added to each of the pins of the bus. When this
specification is not given for a bus, no pull up or pull down resistor is used.

Actel ProASIC and ProASIC+ devices have a pull-up resistor but no pull-down resistor.
Refer to the appropriate data sheet for details.

Most Altera devices do not have pull-up or pull-down resistors. ApexII, Mercury, Stratix
and Cyclone devices have a pull-up resistor but no pull-down resistor. Refer to the
appropriate data sheet for details.

Refer to the Xilinx FPGA data sheet for details of pull up and pull down resistors.

By default, no pull up or pull down resistors are attached to the pins.

Example

interface bus_clock_in(int 4 in) InBus() with
 { pull = 1,
 data = {"P4", "P3", "P2", "P1"}
 };

12.24 quartus_proj_assign specification

The quartus_proj_assign specification can be given to bus-type interfaces or offchip
RAM for EDIF output. It allows you to specify Quartus project pins assignments.

Assignments are specified as a list of pairs of items enclosed in braces. The items are
strings, and enclosed in quotes. The first item in each pair specifies the item you are
assigning, and the second item specifies its value:

{"assignment_name", "assignment_value"}

Example

interface bus_out() MyBusOut(unsigned 3 outPort = MyOutExpr)
 with {quartus_proj_assign = {{"TERMINATION", "Series"},
 {"ENABLE_BUS_HOLD_CIRCUITRY", "On"}},
 standard = "HSTL_I", strength = -1}

12.25 rate specification

The rate specification may be given to a clock, and is used to specify the frequency (in
MHz) at which the clock will need to be driven. The specification only applies to EDIF
output (it is ignored for other outputs). The rate specification causes Handel-C to
generate one of the following:

• a Gate-field Constraints File (GCF) for Actel ProASIC and ProASIC+

• an Assignments and Constraints File (ACF) for use with Max+PlusII for non-
Apex Altera devices

Handel-C Language Reference Manual

www.celoxica.com Page 289

• a TCL script (for use with Quartus) for Altera Apex, Cyclone and Stratix

vant
path ked at

When be
constrai

division
factor.

12.26 rclkpos, wclkpos and clkpulselen
specifications (SSRAM timing)

The rclkpos, wclkpos and clkpulselen may be given to internal or external SSRAM
declarations. They are valid for EDIF, VHDL and Verilog outputs. They are specified as
floating-point numbers in multiples of 0.5. To use these specifications, you must be using
the external_divide or internal_divide clock types with a division factor of 2 or
more.

rclkpos specifies the positions of the clock cycles of the RAM clock for a read cycle.
These positions are specified in terms of cycles of a fast external clock, counting forwards
from the rising edge of the divided Handel-C clock rising edge. You need to write the
value(s) for the specification in braces. For example, with {rclkpos = {1.5}}.

wclkpos specifies the positions of the clock cycles of the RAM clock, for a write cycle. You
need to write the value(s) for the specification in braces. For example, with {wclkpos =
{1.5, 2.5}}.

clkpulselen specifies the length of the pulses of the RAM clock, in terms of cycles of a
fast external clock.

rclkpos, wclkpos and clkpulselen can be applied to the whole of a RAM or MPRAM, or
to individual ports within a memory. Specifications applied to the whole memory will
apply to each port that does not have its own specification. If you apply rclkpos or
wclkpos to the whole memory, the compiler will issue a warning as rclkpos only applies
to the read port(s) and wclkpos only applied to the write port(s). However, the memory
will build correctly.

devices

• a Netlist Constraints File (NCF) for Xilinx devices

The place-and-route tools then use these timing requirements to constrain the rele
s so that the part of the design connected to the clock in question can be cloc

the specified rate. In the example below, the clock will need to run at 17.5MHz.

set clock = external_divide "D17" 4
 with {rate = 17.5};

rate is applied to a divided clock (as shown), it is the divided clock that will
ned by the specification, not the external clock. Undivided clocks are also

constrained to the appropriate value as calculated from the specified rate and the

Handel-C Language Reference Manual

www.celoxica.com Page 290

Illustration

Examples

• Applying RAM clock specifications to ports:

 mpram
 {
 rom int 1 ro[16]
 with {rclkpos = {1}, clkpulselen = 0.5};
 wom int 1 wo[16]
 with {wclkpos = {1.5}, clkpulselen = 0.5};
 } Mympram;

• Pipelined-out SS

• Flow throug

•

RAM timing

h SSRAM

Targeting external synchronous RAMs

Handel-C Language Reference Manual

www.celoxica.com Page 291

12.27 resolutiontime specification

The resolutiontime specification specifies the maximum time in nanoseconds for
metastability to resolve in the channel synchronization hardware. It is needed when you
are using channels to communicate between multiple clock domains. The higher the
value for resolutiontime the less time will be available within a clock tick for
combinational logic in the synchronizer. This only matters if you have set paranoia to 0.

Its value must be less than (clock period x paranoia)where paranoia is > 0. If
paranoia has been set to 0, you should use minperiod rather than resolutiontime.

Either resolutiontime or minperiod may be set, but not both.

Achieving a given value of resolution time

If you need a higher value of resolution time, you can increase the value of the paranoia
specification. The resultant value for minperiod will be clock period -
(resolutiontime/paranoia).

RESOLUTION TIME SUMMED OVER THREE CLOCK TICKS WHEN PARANOIA = 3

12.28 retime specification

In some circumstances it is desirable to prevent some flip-flops in a circuit from being
moved by the retimer. This often occurs when writing interfaces to devices external to

Handel-C Language Reference Manual

www.celoxica.com Page 292

the FPGA or to other IP on the FPGA. The retime specification can be added to any
variable declaration to lock the position of the flip-flops generated by that variable.

unsigned 16 In1, In2 with { retime = 0 };
unsigned 8 SomeOtherVar;
For instance in the code above, variables In1 and In2 are prevented from moving
whereas SomeOtherVar can be moved as required by the retimer to meet the specified
clock rate.

To disable all flip-flops from being retimed in a specific clock domain, the retime
specification can be applied to a clock, for instance:

set clock = external "D17" with { retime = 0 };

12.29 sc_type specification

The sc_type specification may be given to port_in, port_out or generic interfaces to
specify the type of a port in SystemC.

Valid string values of this specification are:

sc_int sc_uint bool sc_logic sc_lv

The default type of a port is bool if the port is 1 bit wide, sc_uint otherwise. You can
apply the sc_type specification to individual ports. If you place the specification at the
end of the interface statement, it will be applied to all the ports.

Example 1: Handel-C ports in SystemC without sc_type specification set:

int X_out;
interface port_in(int 1 To) read();
interface port_out() drive(int 4 From = X_out);

results in Handel-C generating the SystemC ports:

sc_in< bool > To;
sc_out< sc_uint<4> > From;

Example 2: Handel-C ports in SystemC with sc_type specification set:

int X_out;
interface port_in(int 1 To) read() with {sc_type = "sc_logic"};
interface port_out() drive(int 4 From = X_out} with {sc_type = "sc_int"};

results in Handel-C generating the SystemC ports:

sc_in< sc_logic > To;
sc_out< sc_int<4> > From;

Handel-C Language Reference Manual

www.celoxica.com Page 293

12.30 show specification

The show specification may be given to variable, channel, output bus and tri-state bus
declarations. When set to 0, this specification tells the Handel-C simulator not to list this
object in its output. This means that it will not appear in the Variables debug window in
the GUI, but it can be seen in the Watch window.

The default value of this specification is 1.

int 5 x with {show=0};

12.31 speed specification

The speed specification may be given to an output or tri-state bus. It only applies to EDIF
output. The value of this specification controls the slew rate of the output buffer for the
pins on the bus.

For Actel ProASIC and ProASIC+ devices there are three possible values: 0 (slow), 1
(normal) and 2 (fast – default value).

For Altera devices, Xilinx Virtex series and Xilinx Spartan-II and Spartan-3 series, 0 is
slow, 1 is fast, and the default value is 1. Refer to the Altera or Xilinx data sheets for
details of slew rate control.

Example

interface bus_out()
 drive(int 4 signals_from_HC = X_out) with {speed=0};

12.32 standard specification

The standard specification may be applied to any external bus interface (not port_in or
port_out) connected to pins to select the I/O standard to be used on all pins of that
interface. It may also be applied to external clocks and to off-chip memories. If the
standard supports it, you can use the strength specification to set the drive current and
the dci specification to set digital controlled impedance. The standard specification only
applies to EDIF output (it is ignored for other outputs).

standard and dci specifications are ignored if you have used the clockport specification
and set it to 0. (The default for clockport is 1.)

Different device families support different standards. Consult the data sheet for a specific
device for details of which standard it supports. The compiler will issue errors if a non-
supported standard is selected for a particular device, or if the standard specification is
used on a family not supporting selectable I/O standards.

Handel-C Language Reference Manual

www.celoxica.com Page 294

12.32.1 Available I/O standards

I/O
standard

Handel-C
keyword

I/O
standard

Handel-C
keyword

I/O
standard

Handel-C
keyword

LVTTL "LVTTL" HSTL
(1.8v)
Class I

"HSTL18_II" LVDS (2.5V)
see note 1

"LVDS25"

Handel-C Language Reference Manual

www.celoxica.com Page 295

LVCMOS

(3.3 V)

"LVCMOS33" HSTL
(1.8v)
Class II

"HSTL18_II" LVDS (3.3V) "LVDS33"

LVCMOS

(2.5 V)

"LVCMOS25" HSTL
(1.8v)
Class III

"HSTL18_III
"

 BLVDS (2.5V)
see note 1

"BLVDS25"

LVCMOS

(1.8 V)

"LVCMOS18" HSTL
(1.8v)
Class IV

"HSTL18_IV" LVPECL
(3.3V) see
note 1

"LVPECL"

LVCMOS

(1.5 V)

"LVCMOS15" SSTL
(2.5v)
Class I

"SSTL2_I" LVDCI (3.3
V) - see note
2

"LVDCI_33"

LVCMOS

(1.2 V)

"LVCMOS12" SSTL
(2.5v)
Class II

"SSTL2_II" LVDCI (2.5V)
- see note 2

"LVDCI_25"

PCI (33
MHz, 3.3
V)

"PCI33_3" SSTL(
3.3v)
Class I

"SSTL3_I" LVDCI (1.8
V) - see note
2

"LVDCI_18"

PCI (33
MHz, 5.0
V)

"PCI33_5" SSTL
(3.3v)
Class II

"SSTL3_II" LVDCI (1.5
V) - see note
2

"LVDCI_15"

PCI (66
MHz, 3.3
V)

"PCI66_3" SSTL
(1.8v)
Class I

"SSTL18_I" LVDCI (3.3 V,
split
termination)
- see note 3

"LVDCI_DV2_33
"

PCI-X "PCIX" SSTL
(1.8v)
Class II

"SSTL18_II" LVDCI (2.5 V,
split
termination)
- see note 3

"LVDCI_DV2_25
"

GTL "GTL" CTT "CTT" LVDCI (1.8 V,
split
termination)
- see note 3

"LVDCI_DV2_18
"

GTL+ "GTL+" AGP (1x) "AGP-1X" LVDCI (1.5 V,
split
termination)
- see note 3

"LVDCI_DV2_15
"

HSTL
(1.5v)
Class I

"HSTL_I" AGP (2x) "AGP-2X"

HSTL
(1.5v)
Class II

"HSTL_II" HyperTranspo
rt

"HyperTranspo
rt"

Handel-C Language Reference Manual

www.celoxica.com Page 296

HSTL
(1.5v)
Class III

"HSTL_III"

HSTL
(1.5v)
Class IV

"HSTL_IV"

Notes:

1. The only differential I/Os supported for tri-state interfaces are BLVDS25 on the
VirtexII, VirtexII-Pro and Virtex-4 and LVDS25 and LVPECL33 on the VirtexE.

2. LVDCI standards are equivalent to using LVCMOS standards with a dci
specification of 1

3. LVDCI split termination standards are equivalent to using LVCMOS standards
with a dci specification of 0.5

If no I/O standard is specified, the default for Actel ProASIC and ProASIC+ is LVCMOS33
(with drive strength "High" or "Max"). The default for all other devices is LVTTL (with a
drive current of 12mA in the case of Xilinx families supporting Select I/O).

Examples

set clock = external "C1" with {standard = "HSTL_III"};
interface bus_out()
 Eel(int 4 outPort=x)
 with {data = dataPinsO, standard = "HSTL_I"};

interface bus_ts(unsigned 3)
 Baboon(unsigned 3 ape1 = y, unsigned 1 ape2 = en)
 with {data = dataPinsT, standard = "LVTTL", strength = 24};

12.32.2 I/O standards supported by different chips

You can specify the I/O standard for a particular device using the standard specification.
Consult the manufacturer's datasheet for the standards supported by a particular chip.

• Spartan, Spartan XL and Flex10 series devices do not support selectable
standards.

• Actel ProASIC and ProASIC+ only support the LVCMOS33 (default) and
LVCMOS25 standards.

• If you are using differential I/Os with Mercury devices, you need to use the
dedicated pins interfacing to the HSDI (high-speed differential interface)

Handel-C Language Reference Manual

www.celoxica.com Page 297

12.32.3 I/O standard details

The following input/output standards are available in Handel-C. To select a standard, use
the standard specification.

AGP (1x, 2x) – Advanced Graphics Port

The AGP standard is specified by the Advanced Graphics Port Interface Specification
Revision 2.0 introduced by Intel Corporation for graphics applications. AGP is a voltage-
referenced standard requiring a reference voltage of 1.32 V, an input/output source
voltage of 3.3 V and no termination. This standard requires a Differential Amplifier input
buffer and a Push-Pull output buffer.

BLVDS - Bus Low Voltage Differential Signal

BLVDS is a differential I/O scheme, although it is not currently defined by any
IEEE/EIA/TIA industry standards. Unlike LVDS and LVPECL, which are intended for point-
to-point communications, BLVDS allows for bi-directional data transfer over the same set
of transmitter-receiver pin pairs (also known as transceivers). It thus enables
transmission of high-speed differential signals over multipoint backplanes. Due to the bi-
directional transfer capability, 50 ohm termination resistors are needed at both ends of
the transmission line.

CTT – Center Tap Terminated

The CTT standard is a 3.3V memory bus standard, specified by JEDEC Standard JESD 8-
4, Center-Tap-Terminated (CTT) Low-Level, High-Speed Interface Standard for Digital
Integrated Circuits, and sponsored by Fujitsu. CTT is a voltage-referenced standard
requiring a reference voltage of 1.5 V, an input/output source voltage of 3.3 V and a
termination voltage of 1.5 V. The CTT standard is a superset of LVTTL and LVCMOS. CTT
receivers are compatible with LVCMOS and LVTTL standards. CTT drivers, when un-
terminated, are compatible with the AC and DC specifications for LVCMOS and LVTTL.
This standard requires a Differential Amplifier input buffer and a Push-Pull output buffer.

GTL+ – Gunning Transceiver Logic Plus

The GTL+ standard is a high-speed bus standard (JESD 8-3) first used by Intel
Corporation for interfacing with the Pentium Pro processor and is often used for processor
interfacing or communication across a backplane. GTL+ is a voltage-referenced standard
requiring a 1.0 V input reference voltage and board termination voltage of 1.5 V. The
GTL+ standard is an open-drain standard that requires a minimum input/output source
voltage of 3.0 V.

Handel-C Language Reference Manual

www.celoxica.com Page 298

HSTL – High-speed Transceiver Logic

The HSTL standard, specified by JEDEC Standard JESD 8-6, High-Speed Transceiver Logic
(HSTL), is a 1.5 V output buffer supply voltage based interface standard for digital
integrated circuits. This is a voltage-referenced standard, and has four variations or
classes. Classes I & II require a reference voltage of 0.75 V and a termination voltage of
0.75 V; classes III & IV require a reference voltage of 0.9 V and a termination voltage of
1.5 V. All four classes require an input/output source voltage of 1.5 V. This standard
requires a Differential Amplifier input buffer and a Push-Pull output buffer.

HyperTransport

HyperTransport technology is a differential high-speed, high-performance I/O interface
standard. It is a point-to-point standard requiring a 2.5-V VCCIO, in which each
HyperTransport technology bus consists of two point-to-point unidirectional links. Each
link is 2 to 32 bits. The HyperTransport technology standard does not require an input
reference voltage. However, it does require a 100-ohm termination resistor between the
two signals at the input buffer.

LVCMOS (3.3 V) – 3.3 Volt Low-Voltage CMOS

This standard is an extension of the LVCMOS standard and is defined in JEDEC Standard
JESD 8-A, Interface Standard for Nominal 3.0 V/3.3 V Supply Digital Integrated Circuits.
This is a single-ended general-purpose standard also used for 3.3V applications. It uses a
5V-tolerant CMOS input buffer and a Push-Pull output buffer. This standard requires a
3.3V input/output source voltage, but does not require the use of a reference voltage or
a board termination voltage.

LVCMOS (2.5 V) – 2.5 Volt Low-Voltage CMOS

This standard is an extension of the LVCMOS standard and is documented by JEDEC
Standard JESD 8-5, 2.5 V ± 0.2 V (Normal Range) and 1.7 V to 2.7 V (Wide Range)
Power Supply Voltage and Interface Standard for Non-terminated Digital Integrated
Circuit. This is a single-ended general-purpose standard, used for 2.5V (or lower)
applications. It uses a 5V-tolerant CMOS input buffer and a Push-Pull output buffer. This
standard requires a 2.5V input/output source voltage, but does not require the use of a
reference voltage or a board termination voltage. Altera documentation refers to this
standard as simply "2.5 V".

LVCMOS (1.8 V) – 1.8 Volt Low-Voltage CMOS

This standard is an extension of the LVCMOS standard and is documented by JEDEC
Standard JESD 8-7, 1.8 V ± 0.15 V (Normal Range) and 1.2 V to 1.95 V (Wide Range)
Power Supply Voltage and Interface Standard for Non-terminated Digital Integrated

Handel-C Language Reference Manual

www.celoxica.com Page 299

Circuit. This is a single-ended general-purpose standard, used for 1.8V power supply
levels and reduced input and output thresholds. It uses a 5V-tolerant CMOS input buffer
and a Push-Pull output buffer. This standard does not require the use of a reference
voltage or a board termination voltage. Altera documentation refers to this standard as
simply "1.8 V".

LVCMOS (1.5 V) – 1.5 Volt Low-Voltage CMOS

This standard is an extension of the LVCMOS standard. This is a single-ended general-
purpose standard, used for 1.5V applications. It uses a 5V-tolerant CMOS input buffer
and a Push-Pull output buffer. This standard does not require the use of a reference
voltage or a board termination voltage. Altera documentation refers to this standard as
simply "1.5 V".

LVCMOS (1.2 V) - 1.2 Volt Low-Voltage CMOS

This standard is an extension of the LVCMOS standard. This is a single-ended general-
purpose standard, used for 1.2V applications. It uses a 5V-tolerant CMOS input buffer
and a Push-Pull output buffer. This standard does not require the use of a reference
voltage or a board termination voltage.

LVDCI - Low Voltage Digital Controlled Impedance

Xilinx Virtex II devices are able to provide controlled impedance input buffers and output
drivers that eliminate reflections without an external source termination. Output drivers
can be configured as controlled impedance drivers, or as controlled impedance drivers
with half impedance. Inputs can be configured to have termination to VCCO or to VCCO/2
(split termination), where VCCO is the input/output source voltage. All of these are
available at four voltage levels: 1.5 V, 1.8 V, 2.5 V and 3.3 V. For further details, please
refer to the Xilinx Data Book.

LVDS – Low Voltage Differential Signal

LVDS is a differential I/O standard. It requires that one data bit be carried through two
signal lines. The LVDS I/O standard is used for very high-performance, low-power-
consumption data transfer. Two key industry standards define LVDS: IEEE 1596.3 SCI-
LVDS and ANSI/TIA/EIA-644. Both standards have similar key features, but the IEEE
standard supports a maximum data transfer of 250 Mbps. The use of a reference voltage
or a board termination voltage is not required, but a 100 ohm termination resistor is
required between the two traces at the input buffer.

Handel-C Language Reference Manual

www.celoxica.com Page 300

LVPECL – Low Voltage Positive Emitter Coupled Logic

LVPECL is a differential I/O standard. It requires that one data bit be carried through two
signal lines. The LVPECL standard is similar to LVDS. In LVPECL, the voltage swing
between the two differential signals is approximately 850 mV. The use of a reference
voltage or a board termination voltage is not required, but an external termination
resistor is required.

LVTTL – Low Voltage TTL

The Low-Voltage TTL, or LVTTL standard is a single ended, general purpose standard for
3.3V applications that uses an LVTTL input buffer and a Push-Pull output buffer. The
LVTTL interface is defined by JEDEC Standard JESD 8-A, Interface Standard for Nominal
3.0 V/3.3 V Supply Digital Integrated Circuits. This standard requires a 3.3V output
source voltage, but does not require the use of a reference voltage or a termination
voltage.

PCI (33 MHz, 3.3 V) & PCI (66 MHz, 3.3 V) – 3.3 Volt PCI

The PCI standard specifies support for 33 MHz, 66 MHz and 133 MHz PCI bus
applications. It uses a LVTTL input buffer and a Push-Pull output buffer. This standard
requires a 3.3V input output source voltage, but not the use of input reference voltages
or termination.

PCI (33 MHz, 5.0 V) – 5.0 Volt PCI

Some Xilinx devices may be configured in this mode (an extension of the 3.3 Volt PCI
standard), which makes them 5V tolerant. No Altera devices currently support this mode.

PCI-X

The PCI-X standard is an enhanced version of the PCI standard that can support higher
average bandwidth and has more stringent requirements.

SSTL2 – Stub Series Terminated Logic for 2.5 V

The SSTL2 standard, specified by JEDEC Standard JESD 8-9, Stub-Series Terminated
Logic for 2.5 Volts (SSTL-2), is a general purpose 2.5 V memory bus standard sponsored
by Hitachi and IBM. This is a voltage-referenced standard, and has two variations or
classes, both of which require a reference voltage of 1.25 V, an input/output source
voltage of 2.5 V and a termination voltage of 1.25 V. This standard requires a Differential
Amplifier input buffer and a Push-Pull output buffer. SSTL2 is used for high-speed SDRAM
interfaces.

Handel-C Language Reference Manual

www.celoxica.com Page 301

SSTL3 – Stub Series Terminated Logic for 3.3 V

The SSTL2 standard, specified by JEDEC Standard JESD 8-8, Stub-Series Terminated
Logic for 3.3 Volts (SSTL-3), is a general purpose 3.3 V memory bus standard sponsored
by Hitachi and IBM. This is a voltage-referenced standard, and has two variations or
classes, both of which require a reference voltage of 1.5 V, an input/output source
voltage of 3.3 V and a termination voltage of 1.5 V. This standard requires a Differential
Amplifier input buffer and an Push-Pull output buffer. SSTL3 is used for high-speed
SDRAM interfaces.

SSTL18 - Stub Series Terminated Logic for 1.8 V

The SSTL18 standard, specified by JEDEC Preliminary Standard JC42.3, is a general
purpose 1.8V memory bus standard. This is a voltage-referenced standard, and has two
variations or classes, both of which require a reference voltage of 0.90 V, an input/output
source voltage of 1.8 V and a termination voltage of 0.90 V. This standard requires a
Differential Amplifier input buffer and a Push-Pull output buffer. SSTL18 is used for high-
speed SDRAM interfaces.

GTL – Gunning Transceiver Logic Terminated

The GTL standard is a high-speed bus standard (JESD 8-3) invented by Xerox. Xilinx has
implemented the terminated variation for this standard (Altera has not). This standard
requires a differential amplifier input buffer and an Open Drain output buffer.

12.32.4 Differential I/O standards

Differential I/O standards can be used with bus-type interfaces, offchip memories and
external clocks in EDIF output. They are specified using the standard specification. The
differential I/O standards supported by Handel-C are LVDS25, LVDS33, BLVDS25,
LVPECL33 and HyperTransport.

If you want to build a tri-state interface, you can use only the BLVDS25 standard.

To specify pins for a bus_type interface with a differential I/O, use the data specification.
Pins are specified in pairs enclosed in braces:

interface bus_in (unsigned 2 datain) I()
 with {standard = "LVDS25",
 data = {{"P1", "P2"}, {"P3", "P4"}}}

The first pin in a pair is the positive one. You can omit the second pin of each pair, but
you still need to enclose the single pins within braces.

Handel-C Language Reference Manual

www.celoxica.com Page 302

You also need to specify pair of pins enclosed in braces for pin specifications for offchip
memories (addr, we, cs, oe and clk) when you are using a differential I/O. For example:

ram unsigned 4 ExtRAM[256]
 with {offchip=1, standard = "LVPECL33",
 addr={{"P1", "P2"}, {"P3", "P4"}, {"P5", "P6"}, {"P7", "P8"}},
 data={{"P9", "P10"}, {"P11", "P12"}, {"P13", "P14"}, {"P15", "P16"}},
 we={{"P17", "P18"}},
 cs={{"P19", "P20"}},
 oe={{"P21", "P22"}}
 };

If you use a differential I/O for an external clock, the pins are specified using the set
clock construct, rather than the data specification:

set clock = external {"C1", "C2"}
 with {standard = "LVDS25"}

The standard specification is ignored for VHDL and Verilog output, but if you have used a
data specification with pairs of pins, and then build the code for VHDL or Verilog output,
the first pin in each pair will be assigned and the other pin will be ignored.

12.33 std_logic_vector specification

The std_logic_vector specification may be given to port_in, port_out or generic
interfaces, where you want to use a std_logic_vector port instead of an unsigned port
in VHDL. Set std_logic_vector to 1 if you want to:

• instantiate an external block of code in Handel-C generated VHDL, and the
external block uses one or more std_logic_vector ports

• produce a block of VHDL that will be linked into another VHDL block that uses
one or more std_logic_vector ports.

The default value for std_logic_vector is 0. You can apply the std_logic_vector
specification to an individual port. If you place the specification at the end of the
interface statement, it will be applied to all the ports.

The std_logic_vector specification is ignored for all outputs except for VHDL

Example 1: Handel-C instantiation of a Bloo component with
std_logic_vector set to 0 (default):

interface Bloo(unsigned 1 myin) B(unsigned 4 myout = x) with
{std_logic_vector = 0};

results in Handel-C generating this VHDL instantiation of the Bloo component:

Handel-C Language Reference Manual

www.celoxica.com Page 303

component Bloo
port (
 myin : out std_logic;
 myout : in unsigned (3 downto 0)
);
 end component;

Example 2: Handel-C instantiation of a Bloo component with
std_logic_vector set to 1:

interface Bloo(unsigned 1 myin)
 B(unsigned 4 myout = x) with {std_logic_vector = 1};

results in Handel-C generating this VHDL instantiation of the Bloo component:

component Bloo
port (

);
end component;

12.34
The strength specification
on any exte select the
drive current (in mA so be applied to

tput.

Different devi arnings if a
non-supported v vice datasheet to
confirm what v

The following st HSTL III, HSTL
IV, CTT, AG

The following devices do not support drive strength selection for any standards:
Excalibur, Apex 20, Apex 20KE and Apex 20KC.

Example

interface bus_out() Eel(int 4 outPort = x)
 with {data = dataPinsO, standard = "HSTL_I", strength = -1};
interface bus_ts(unsigned 3 inPort) Baboon(ape1 = y, ape2 = en)
 with {data = dataPinsT, standard = "LVTTL",
 strength = 24};

 myin : out std_logic_vector (0 downto 0);
 myout : in std_logic_vector (3 downto 0)

strength specification

 specification may be used in conjunction with the standard
rnal bus interface (not port_in or port_out) connected to pins to

) to be used on all pins of that interface. It may al
off-chip memories. You can only use the strength specification for EDIF ou

ce families support different values. The compiler will issue w
alue is selected for a particular device. Check the de

alues it supports

andards do not support drive strength selection: PCI, GTL,
P(1x), AGP(2x), LVDS, LVPECL, LVDCI and BLVDS.

Handel-C Language Reference Manual

www.celoxica.com Page 304

12.35 synchronous specification

The
specificat
asynch

Example

12.36

The s on
e place

synchronous specification may be given to a reset signal. The value of this
ion controls whether the reset is synchronous (occurs on next clock tick) or

ronous (occurs immediately). The default is asynchronous (0)

set reset = external with {synchronous=1};

 unconstrainedperiod specification

unconstrainedperiod specification gives the maximum period in nanosecond
channel control paths between clock domains. If this specification is not used, th
and route tools may generate a warning for affected paths crossing the clock domain.

Handel-C Language Reference Manual

www.celoxica.com Page 305

If the specification is used, it applies to unconstrained paths into the clock domain. The
diagram below shows where it is used.

TIMES WITH PARANOIA AT ITS DEFAULT OF 1

tr: time to transfer between domains (paranoia +1) x tp

tup: unconstrained period

tmp: minperiod

tp: clock period

set clock = external with {unconstrained period=10};

12.37 vhdl_type specification

The vhdl_type specification may be given to port_in, port_out or generic interfaces to
specify the type of a port in VHDL.

Valid string values of this specification are:

unsigned signed std_logic std_logic_vector

The default type of a port is std_logic if the port is 1 bit wide, unsigned otherwise. You
can apply the vhdl_type specification to individual ports. If you place the specification at
the end of the interface statement, it will be applied to all the ports.

 The vhdl_type specification replaces the deprecated std_logic_vector
specification

Handel-C Language Reference Manual

www.celoxica.com Page 306

Example 1: Handel-C instantiation of a Bloo component without
vhdl_type specification set:

interface Bloo(unsigned 1 myin) B(unsigned 4 myout = x);

results in Handel-C generating this VHDL instantiation of the Bloo component:

COMPONENT Bloo
PORT (
 myin : OUT std_logic;
 myout : IN unsigned (3 DOWNTO 0)
);
END COMPONENT;

Example 2: Handel-C instantiation of a Bloo component with vhdl_type
applied to entire interface:

interface Bloo(unsigned 1 myin)
 B(unsigned 4 myout = x) with {vhdl_type = "std_logic_vector"};

results in Handel-C generating this VHDL instantiation of the Bloo component:

COMPONENT Bloo
PORT (
 myin : OUT std_logic_vector (0 DOWNTO 0);
 myout : IN std_logic_vector (3 DOWNTO 0)
);
END COMPONENT;

Example 3: Handel-C instantiation of a Bloo component with vhdl_type
applied to individual ports:

interface Bloo(unsigned 1 myin with {vhdl_type = "std_logic_vector"})
 B(unsigned 4 myout = x with {vhdl_type = "signed"});

results in Handel-C generating this VHDL instantiation of the Bloo component:

COMPONENT Bloo
PORT (
 myin : OUT std_logic_vector (0 DOWNTO 0);
 myout : IN signed (3 DOWNTO 0)
);
END COMPONENT;

Handel-C Language Reference Manual

www.celoxica.com Page 307

12.38 warn specification

The warn specification may be given to a variable, RAM, ROM, channel, bus or clock. It
can be used for any DK output. When set to zero, certain non-crucial warnings will be
disabled for that object. When set to one (the default value), all warnings for that object
will be enabled.

int 5 x with {warn=0};

The
the If it
is us

wegate

e
Hand lf of
th d
half of

You ca
port er
specif
apply

12.40 westart and welength specifications

The westart and welength specifications position the write enable strobe within the
Handel-C clock cycle. If they are used in the absence of SRAM clock specifications
(rclkpos, wclkpos and clkpulselen), they force the generation of an asynchronous
memory or memory port. The specifications may be given to internal or external RAM
declarations. You can only use these specifications together with external_divide or
internal_divide clock types with a division factor greater than 1. If you have an
undivided clock, use the wegate specification instead. westart and welength are valid
for EDIF, VHDL and Verilog output.

westart is used to specify the starting position of the write enable strobe, and welength
is used to specify its length. For both of these specifications, a unit value corresponds to
a single cycle of the fast clock which has been divided in order to generate the Handel-C
clock. The size of welength and westart can be given in multiples of 0.5, but (westart +
welength) must not exceed the clock divide.

12.39 wegate specification

wegate specification may be given to external or internal RAM declarations to place
write-enable strobe. You can only use this specification with an undivided clock.
ed in the absence of SRAM clock specifications (rclkpos, wclkpos and

clkpulselen), it forces the generation of an asynchronous memory or memory port. If
you have a divided clock, use the westart and welength specifications instead. The

 specification is valid for EDIF, VHDL and Verilog output.

When the wegate specification is set to 0, the write strobe will appear throughout th
el-C clock cycle. When set to -1, the write strobe will appear only in the first ha

e Handel-C clock cycle. When set to 1, the write strobe will appear only in the secon
the Handel-C clock cycle.

n apply the specification to the whole of a RAM or MPRAM, or to individual write
s within an MPRAM. Specifications applied to individual ports take precedence ov

ications applied to the whole memory. Specifications applied to the whole memory
 to each port that does not have its own specification.

Handel-C Language Reference Manual

www.celoxica.com Page 308

You can apply the specification to the whole of a RAM or MPRAM, or to individual write
ports within a memory. Specifications applied to the whole memory will apply to each
port that does not have its own specification.

Examples

//applying the specifications to the whole RAM
set clock = external_divide "P78" 4;
ram unsigned 6 x[34] with {westart = 1, welength = 1.5};

WRITE ENABLE STROBE WITH A WESTART OF 1, A WELENGTH OF 1.5, AND A CLOCK DIVIDE OF 4

//applying the specifications to ports
mpram
{
 wom unsigned 6 r[32}
 with {westart = 1, welength = 1.5};
 wom unsigned 6 s[32];
 rom unsigned 6 t[32];
 rom unsigned 6 u[32};

} with {westart = 1.5, welength = 0.5};

This example would result in a compiler warning as the specifications at the end would be
applied to all ports that do not have their own specification (s, t and u). t and u are
read-only ports and therefore cannot have write-enable specifications. However, the
mpram would build correctly with the first set of specifications applied to port r and the
second set to port s.

Handel-C Language Reference Manual

www.celoxica.com Page 309

Handel-C Language Reference Manual

www.celoxica.com Page 310

13 Handel-C preprocessor
The preprocessor is invoked by the Handel-C compiler as the first stage in the
compilation process, and is used to manipulate the text of source code files. Correct use
of this tool can simplify code development and the subsequent maintenance process.
There are a number of functions performed by the preprocessor:

• Macro substitution

• File inclusion

• Conditional compilation

• Line splicing

• Line control

• Concatenation

• Error generation

• Predefined macro substitution

Communication with the preprocessor occurs through the use of directives. Directives
are lines within source code which begin with the # character, followed by an identifier
known as the directive name. For example, the directive to define a macro is ‘#define’.

13.1 Preprocessor macros

Simple macros

The preprocessor supports several types of macros. Simple macros (or manifest
constants) involve the simplest form of macro substitution and are defined with the form:

#define name sequence-subsitute

Any occurrences of the token name found in the source code are replaced with the token
sequence sequence-substitute, which may include spaces. All leading and trailing white
spaces around the replacement sequence are removed. For example:

#define FOO 1024
#define loop_forever while (1)

Parameterized macros

You can also define macros with arguments. This allows replacement text to be passed as
parameters. For example:

#define mul(A, B) A*B

This will replace

x = mul (2, 3);

Handel-C Language Reference Manual

www.celoxica.com Page 311

with

x = 2 * 3;

Take care to preserve the intended order of evaluation when passing parameters. For
example the line

x = mul (a – 2, 3);

will be expanded into

x = a – 2 * 3;

The multiplication is evaluated first, then the result subtracted from variable a. This is
almost certainly not the intention, and errors of this type may be difficult to locate.

If a parameter name is preceded by a # when declared as part of a macro, it is expanded
into a quoted string by the preprocessor. E.g., if a macro is defined:

#define quickassert(X) assert (width(X)==1,O "Width of " #X " is not
1!\n");

The line:

quickassert(length);

will expand into:

assert (width(X)==1,O "Width of length is not 1!\n");

Undefining identifiers

To undefine an identifier, the #undef directive may be used. E.g.

#undef FOO

Note that no error will occur if the identifier has not previously been defined.

 Preprocessor directives cannot be used unexpanded in a library; use macro
procedures instead.

13.2 File inclusion

File inclusion makes it possible to easily manage and reuse declarations, macro
definitions, and other code. The feature is helpful when writing general purpose functions
and declarations which can be reused for a number of designs. File inclusion is achieved
using directives of the form:

#include "filename"

Handel-C Language Reference Manual

www.celoxica.com Page 312

or

#include <filename>

Such lines are replaced by the contents of the file indicated by filename. If the file name
is enclosed by quotation marks, the preprocessor looks for the file in the directory
containing source code for the current design. If the file cannot be found there, or the file
name is enclosed with angular brackets, the search examines user-defined include file
directories (specified using Tools>Options>Directories), and the main Agility include file
directory.

13.3 Conditional compilation

Conditional directives

You can control preprocessing with conditional directives. These statements can add a
great deal of flexibility to source code. For example, they may be used to alter the
behaviour of a design, depending upon whether a macro definition is present. Conditional
statements must begin with an #if directive and an expression to be evaluated, and end
with the #endif directive. Valid directives are:

#if expression

#elif expression
#else

#endif

Example

#if a==b
 // include this section if a is equal to b
#elif a>b
 // include this section if a is greater than b
#else
 // otherwise include this section
#endif

If the expression is evaluated to be zero, then any text following the directive will be
discarded until a subsequent #elif, #else, or #endif statement is encountered;
otherwise the lines will be included as normal. Note that each directive should be placed
individually on its own line starting at column 0.

A useful application for conditional directives is easy exclusion of code without the use of
comments. For example:

Handel-C Language Reference Manual

www.celoxica.com Page 313

#if (0)
 // Code for debugging purposes
#endif
 // Code continues

By amending the above evaluation to (1), the code can quickly be included during
compilation.

Conditional definition

To test for the existence of a macro definition, use the following directives:

#ifdef identifier (equivalent to #if defined (identifier))

#ifndef identifier (equivalent to #if !defined (identifier))
These are used in the same way as #if, but are followed by an identifier, rather than an
expression. The #ifndef directive is often used to ensure that source code is only
included once during compilation. E.g.

#ifndef UTILCODE
#define UTILCODE

// Utility code is written here

#endif

13.4 Line control

A directive of the form:

#line integer

instructs the compiler that the next source line is the line number specified by integer.
If a filename token is also present:

#line integer "filename"

the compiler will additionally regard filename as the name of the current input file.

13.5 Concatenation in macros

If a macro is defined with a token sequence containing a ## operator, each instance of
is removed (along with any surrounding white space), thus concatenating adjacent
tokens into one. For example, if the macro below was declared:

 #define million(X) X ## e6

then

Handel-C Language Reference Manual

www.celoxica.com Page 314

 i = million (3);

is expanded into:

 i = 3e6;

Take care when specifying parameters. In the example above, if 3e6 was passed instead
of 3, then the line would be expanded into:

 i = 3e6e6;

which would result in an error.

13.6 Error generation

Fatal error messages may be reported during preprocessing using the directive:

#error error_message

This may be useful with conditional compilation if your design only supports certain
combinations of parameter definitions.

13.7 Predefined macro substitution

The preprocessor contains a number of useful predefined macros which may be placed
into source code:

_ _FILE_ _ Expands to the name of the current file being compiled

_ _LINE_ _ Expands to the number of the current source line

_ _TIME_ _ Expands to the current time of compilation in the form hh:mm:ss

_ _DATE_ _ Expands to the current date of compilation in the form mmm dd
yyyy

13.8 Line splicing

You can splice multiple lines together by placing a backslash character (‘\’) followed by a
carriage return between them. This feature allows you to break lines for aesthetic
purposes when writing code, which are then joined by the preprocessor prior to
compilation. For example, if a macro is defined:

#define ERRORCHECK(error) \
 if (error!=0) \
 return (error)

The line:

Handel-C Language Reference Manual

www.celoxica.com Page 315

ERRORCHECK(i);

Expands to:

if (i!=0)
 return i;

Handel-C Language Reference Manual

www.celoxica.com Page 316

14 Language syntax
The complete Handel-C language syntax is given in BNF-like notation.

The overall syntax for the program is:

program ::= {external_declaration}

void main(void)
{
 {declaration}
 {statement}
}

Language

external_declaration ::= function_definition
 | declaration
 | set_statement

14.1 Language syntax conventions

BNF (Backus-Naur Format) is a way to describe the syntax of file formats. It consists of
definitions of the form

identifier ::= definition

The identifier is a word which describes this part of the syntax.
The ::= represents "consists of".
The definition lists the permitted contents of the identifier.

The conventions used in this language reference are:

• Terminal symbols are set in typewriter font like this.

• Non-terminal symbols are set in italic font like this.

• Square brackets [...] denote optional components.

• Braces {...} denotes zero, one or more repetitions of the enclosed
components.

• Braces with a trailing plus sign {...}+ denote one or several repetitions of the
enclosed components.

• Parentheses (...) denote grouping.

14.2 Keyword summary

The keywords listed below are reserved and cannot be used for any other purpose.

Handel-C Language Reference Manual

www.celoxica.com Page 317

Keyword Meaning ANSI-C/C++
?

= assignment operator Yes

; statement terminator Yes

, comma operator Yes

{ } code block delimiters Yes

<> type clarifier No

(open delimiter Yes

) close delimiter Yes

[] array index delimiters,
bit selection

Yes

[:] bit range selection No

! logical NOT operator Yes

! output to channel No

+ addition operator Yes

- subtraction operator Yes

- unary minus operator Yes

* multiplication operator Yes

/ division operator Yes

% modulo operator Yes

\\ drop LSBs No

<- take LSBs No

? read from channel No

? conditional expression Yes

^ Bitwise XOR Yes

& Bitwise AND Yes

| Bitwise OR Yes

~ bitwise NOT Yes

&& Logical AND Yes1

|| Logical OR Yes1

. structure member
operator

Yes

<< left-shift operator Yes

>> right shift operator Yes

< less than operator Yes1

> greater than operator Yes1

<= less or equal operator Not standard1

Handel-C Language Reference Manual

www.celoxica.com Page 318

>= greater or equal
operator

Not standard1

== equality operator Not standard1

!= inequality operator Not standard1

++ increment operator Not standard

-- decrement operator Not standard

+= assignment operator Not standard

-= assignment operator Not standard

*= assignment operator Not standard

/= assignment operator Not standard

%= assignment operator Not standard

<<= assignment operator Not standard

>>= assignment operator Not standard

&= assignment operator Not standard

|= assignment operator Not standard

^= assignment operator Not standard

... Reserved. Not valid in
Handel-C, but can be
used for C/C++ calls.

Yes

-> structure pointer
operator

Yes

@ concatenation operator No
1 Note, the results of these tests are a single bit unsigned int

Handel-C Language Reference Manual

www.celoxica.com Page 319

Keyword Meaning ANSI-C/C++ ?

assert diagnostic macro to print to
stderr

Not standard

auto auto variable Yes

break immediate exit from code block Yes

case selection within switch and prialt Yes

chan define channel variable No

chanin simulator channel in No

chanout simulator channel out No

char 8-bit variable Yes

clock define clock No

const specify that variable's value will
not change

Yes

continue force next iteration of loop Yes

default default case within switch,
prialt

Yes

delay wait one clock cycle No

do start do while loop Yes

double Reserved. Not valid in Handel-C C-only

else conditional execution Yes

enum enumeration constant Yes

expr define macro as expression No

extern define global variable Yes

external clock from device pin No

external_divide clock from device pin with integer
division

No

family define target device's family No

float Reserved. Not valid in Handel-C C-only

for for loop iteration Yes

goto jump to specified label Yes

if conditional execution Yes

ifselect conditional compilation on
compile-time selection

No

in define scope for local macro
expression declaration

No

inline declaration of inline function No

Handel-C Language Reference Manual

www.celoxica.com Page 320

int definable width variable Yes

interface declaration of off-chip interface No

internal use internal clock No

internal_divid internal clock with integer
division

No

intwidth set integer width No

let start declaration of local macro
expression

No

long declare 32-bit variable Yes

macro declare a macro No

mpram declare a multi-port RAM No

par execute statements in parallel No

part define target hardware No

prialt execute first ready channel No

proc define macro as procedure No

ram declare a RAM (array) No

register declare register variable Yes

releasesema
(semaphore)

free semaphore No

reset reset design No

return return from function Yes

rom declare a ROM (array) No

select select expression or macro expr
at compile time

No

sema declare a semaphore No

set specify device family or part, int
width, target, reset or clock

No

seq execute statements in sequence No

shared declare a shared expression No

short declare 16-bit variable Yes

signal declare a signal object No

signed declare a signed variable Yes

sizeof Reserved. Not valid in Handel-C Yes

static specify variable with limited
scope

Yes

struct declare a structure variable Yes

switch switch statement (between
cases)

Yes

Handel-C Language Reference Manual

www.celoxica.com Page 321

try
reset(Condition
)
{...}

execute statements if Condition
is true during execution within
related try block

No

trysema Test if semaphore owned. Take if
not.

No

typedef define type Yes

typeof return type of expression No

undefined specify a variable of undefined
width

No

union Reserved. Not valid in Handel-C Yes

unsigned declare an unsigned variable Yes

void specify void return type, Yes

volatile declare volatile variable Yes

while loop statement Yes

width return integer width No

with specify interface, signals,
channels, RAM and ROM types,
variables etc.

No

wom declare a WOM (array) No

The following character sequences are also reserved:

/* */ // # " '

14.3 Constant expressions

The following constants are available in Handel-C

• Identifiers

• Integer constant

• Character constants

• String constant

• Floating-point constants

14.3.1 Identifiers: syntax

identifier ::= letter {letter | 0...9}

letter ::= A...Z | a...z | _

Handel-C Language Reference Manual

www.celoxica.com Page 322

14.3.2 Integer constants: syntax

integer_constant ::= [-]{1...9}+{0...9}
 | [-](0x | 0X){0...9 | A...F | a...f}+
 | [-](0){0...7}
 | [-](0b | 0B){0...1}+

14.3.3 Character constants: syntax

character is any printable character or any of the following escape codes.

Escape code ASCII value Meaning

\a 7 Bell (alert)

\b 8 Backspace

\f 12 Form feed

\t 9 Horizontal tab

\n 10 New line

\v 11 Vertical tab

\r 13 Carriage return

\" - Double quote mark

\0 0 String terminator

\\ - Backslash

\’ - Single quote mark

\? - Question mark

14.3.4 Strings: syntax

string ::= "{character}"

14.3.5 Floating-point constants: syntax

float_constant::=
 [{0...9}+].{0...9}+[(e | E)[+|-]{0...9}+][f | F | l | L]
 | {0...9}+.[(e | E)[+|-]{0...9}+][f | F | l | L]
 | {0...9}+(e | E)[+|-]{0...9}+[f | F | l | L]

Handel-C Language Reference Manual

www.celoxica.com Page 323

14.4 Functions and declarations: syntax

function_definition ::= declaration_specifiers declarator
 compound_ statement [with initializer ;]
 | declarator compound_statement [with initializer ;]

declaration ::= declaration_specifiers [init_declarator_list] [with
initializer] ;
 | interface_declaration
 | macro_declaration

declaration_specifiers ::= storage_class_specifier [declaration_specifiers
]
 | type_specifier [declaration_specifiers]
 | type_qualifier [declaration_specifiers]

storage_class_specifier ::= auto
 | register
 | inline
 | typedef
 | extern
 | static

type_specifier ::= void
 | char
 | short
 | int
 | long
 | float
 | double
 | signed
 | unsigned
 | typeof (expression)
 | signal_specifier
 | channel_specifier
 | ram_specifier
 | struct_or_union_specifier
 | enum_specifier
 | typedef_name

type_qualifier ::= const
 | volatile

Handel-C Language Reference Manual

www.celoxica.com Page 324

typedef_name ::= identifier

init_declarator_list ::= declarator
[= initializer] { ,declarator [= initializer]}

14.5 Macro/shared exprs/procs: syntax

macro_declaration ::= macro_proc_decl
 | macro_expr_decl

macro_proc_decl ::= [static | extern]
 macro_proc_spec identifier
 [([macro_param{, macro_param}])] statement
 [with initializer ;]

macro_expr_decl ::= [static | extern]
 macro_expr_spec identifier
 [([macro_param{, macro_param}])] ;
 | [static | extern] macro_expr_spec identifier
 [([macro_param{, macro_param}])] = let_initializer
 [with initializer] ;

macro_proc_spec ::= macro proc

macro_expr_spec ::= macro expr
 | shared expr

let_initializer ::= initializer
 | let macro_expr_decl in let_initializer

macro_param ::= identifier

Handel-C Language Reference Manual

www.celoxica.com Page 325

14.6 Interfaces: syntax

interface_declaration ::= interface identifier
([int_parameter_declaration
 { , int_parameter_declaration}]) identifier
 ([assignment_expr_spec {, assignment_expr_spec }])
 [with initializer];
 | interface_type_declarator
 | old_style_interface_declarator

interface_type_declarator :: = interface identifier
 ([int_parameter_proto{ , int_parameter_proto}])
 identifier ([int_init_parameter_declaration
 { ,
int_init_parameter_declaration}])

This format is deprecated but retained for compatibility reasons:

old_style_interface_declarator ::= interface identifier
 ([int_parameter_declaration {, int_parameter_declaration}])
 identifier ([assignment_expr_spec {,assignment_expr_spec})
 [with initializer] ;

interface ::= [static | extern] interface

 int_parameter_proto::= declaration_specifiers
 | declaration_specifiers declarator
 | declaration_specifiers abstract_declarator
 | declaration_specifiers width

int_parameter_declaration ::= declaration_specifiers [with initializer]
 | declaration_specifiers declarator [with initializer]
 | declaration_specifiers abstract_declarator [with initializer]
 | declaration_specifiers width [with initializer]

int_init_parameter_declaration ::= int_parameter_declaration
 | declaration_specifiers declarator [= initializer
] [with initializer]

assignment_expr_spec ::= assignment_expression [with initializer]

Handel-C Language Reference Manual

www.celoxica.com Page 326

14.7 Structures and unions: syntax

struct_or_union_specifier ::= aggregate_form [identifier] {
{struct_declaration}+ }
 | aggregate_form identifier

aggregate_form ::= struct
 | union
 | mpram

struct_declaration ::= { type_specifier | type_qualifier}+
 {struct_declarator} + [with initializer];

struct_declarator ::= declarator
 | [declarator]: constant_expression

 The current version of Handel-C does not support unions.

14.8 Enumerated types: syntax

enum_specifier ::= enum [identifier] { enumerator {,[enumerator]} }
 | enum identifier
enumerator ::= identifier
 | identifier = constant_expression

14.9 Signal specifiers: syntax

signal_specifier ::= signal < type_name >
 | signal

14.10 Channel syntax

channel_specifier ::= chan [< type_name >]
 | chanin [< type_name >]
 | chanout [< type_name >]

Handel-C Language Reference Manual

www.celoxica.com Page 327

14.11 Ram specifiers: syntax

ram_specifier ::= ram [< type_name >]
 | rom [< type_name >]
 | wom [< type_name >]

14.12 Declarators: syntax

declarator ::= [width] pointer direct_declarator

width ::= undefined
 | primary_expression

direct_declarator ::= identifier
 | (pointer direct_declarator)
 | direct_declarator [[constant_expression]]
 | direct_declarator ([{parameter_declaration}+])

pointer ::= *
 | * type_qualifier
 | * pointer
 | * type_qualifier pointer

14.13 Function parameters: syntax

parameter_declaration ::= declaration_specifiers
 | declaration_specifiers width
 | declaration_specifiers abstract_declarator
 | declaration_specifiers declarator

Handel-C Language Reference Manual

www.celoxica.com Page 328

14.14 Type names and abstract declarators:
syntax

type_name ::= { type_specifier | type_qualifier}+
 | { type_specifier | type_qualifier}+ abstract_declarator
 | { type_specifier | type_qualifier}+ width

abstract_declarator ::= [width] pointer direct_abstract_declarator

direct_abstract_declarator ::= (pointer direct_abstract_declarator)
 | [direct_abstract_declarator][[constant_expression]]
 | [direct_abstract_declarator] ([{parameter_declaration}+])

14.15 Statements: syntax

statement ::= semi_statement ;
 | non_semi_statement

semi_statement ::= expression_statement
 | do statement while (expression)
 | jump_statement
 | assert (constant_expression [, assignment_expression {,
assignment_expression}])
 | delay
 | channel_statement
 | set_statement

non_semi_statement ::= labelled_statement
 | compound_statement
 | selection_statement
 | iteration_statement

The following statements can appear in for start/end conditions:

Handel-C Language Reference Manual

www.celoxica.com Page 329

for_statement ::= non_semi_statement
 | expression_statement
 | do statement while (expression)
 | assert (constant_expression , constant_expression
 [, assignment_expression{, assignment_expression}])
 | delay
 | channel_statement

These are the statements that can appear in prialt blocks:

Handel-C Language Reference Manual

www.celoxica.com Page 330

prialt_statement ::= semi_statement ;
 | non_semi_prialt_statement

non_semi_prialt_statement ::= prialt_labelled_statement
 | compound_statement
 | selection_statement
 | iteration_statement

labelled_statement ::= identifier : statement
 | case constant_expression : statement
 | default : statement

prialt_labeled_statement ::= identifier : prialt_statement
 | case channel_statement : prialt_statement
 | default : prialt_statement

expression_statement ::= [expression]

channel_statement ::= unary_expression ! expression
 | logical_or_expression ? expression

jump_statement ::= goto identifier
 | continue
 | break
 | return
 | return expression

selection_statement ::= if (expression) statement if
 | if (expression) statement else statement
 | ifselect (constant_expression) statement if
 | ifselect (constant_expression) statement else statement
 | switch (expression) statement
 | prialt { [{ prialt_statement }+] }

set_statement ::= set part = STRING
 | set clock = clock
 | set family = identifier
 | set intwidth = constant_expression
 | set intwidth = undefined
 | set reset = reset

clock ::= internal expression [with initializer]

Handel-C Language Reference Manual

www.celoxica.com Page 331

 | external expression [with initializer]
 | internal_divide expression expression [with initializer]
 | external_divide expression expression [with initializer]

reset ::= internal expression
 | external expression

iteration_statement ::= while (expression) statement
 | for ([for_statement] ; [expression] ;
 [for_statement]) statement

14.15.1 Compound statements with replicators

compound_statement ::= [seq | par] {{ declaration} {statement} }
 | [seq | par] ([repl_macro_param{, repl_macro_param}]
;constant_expression;
 [repl_update_param {, repl_update_param}]) {{declaration} {statement}
}

14.16 Replicators: syntax

Replicator initialization definitions

repl_macro_param ::= repl_param = initializer
 | (repl_param = initializer)

Replicator update definitions

repl_update_param ::= repl_update_param_body
 | (repl_update_param)

repl_update_param_body ::= repl_param assignment_operator initializer
 | ++ repl_param
 | repl_param ++
 | -- repl_param
 | repl_param --

repl_param ::= identifier
 | (repl_param)

Handel-C Language Reference Manual

www.celoxica.com Page 332

14.17 Expressions: syntax

constant_expression ::= assignment_expression

expression ::= assignment_expression
 | expression, assignment_expression}

assignment_expression ::= conditional_expression
 | unary_expression assignment_operator assignment_expression

assignment_operator ::= = | *= | /= | %= | += | -= | <<= | >>=
| &=
 | ^= | |=

initializer ::= assignment_expression

conditional_expression ::= logical_or_expression
 | logical_or_expression ? expression : conditional_expression

logical_or_expression ::= logical_and_expression
 | logical_or_expression || logical_and_expression

logical_and_expression ::= inclusive_or_expression
 | logical_and_expression && inclusive_or_expression

inclusive_or_expression ::= exclusive_or_expression
 | inclusive_or_expression | exclusive_or_expression

exclusive_or_expression ::= and_expression
 | exclusive_or_expression ^ and_expression

and_expression ::= equality_expression
 | and_expression & equality_expression

equality_expression ::= relational_expression
 | equality_expression == relational_expression
 | equality_expression != relational_expression

relational_expression ::= cat_expression
 | relational_expression < cat_expression
 | relational_expression > cat_expression
 | relational_expression <= cat_expression

Handel-C Language Reference Manual

www.celoxica.com Page 333

 | relational_expression >= cat_expression

cat_expression ::= shift_expression
 | cat_expression @ shift_expression

shift_expression ::= additive_expression
 | shift_expression << additive_expression
 | shift_expression >> additive_expression

additive_expression ::= multiplicative_expression
 | additive_expression + multiplicative_expression
 | additive_expression - multiplicative_expression

multiplicative_expression ::= take_drop_expression
 | multiplicative_expression * take_drop_expression
 | multiplicative_expression / take_drop_expression
 | multiplicative_expression % take_drop_expression

take_drop_expression ::= cast_expression
 | take_drop_expression <- cast_expression
 | take_drop_expression \\ cast_expression

cast_expression ::= unary_expression
 | (type_name) cast_expression

unary_expression ::= postfix_expression
 | ++ unary_expression
 | -- unary_expression
 | unary_operator cast_expression
 | sizeof unary_expression
 | sizeof (type_name)
 | width (expression)

unary_operator ::= & | + | - | ~ | ! | *

postfix_expression ::= select_expression
 | postfix_expression [expression]
 | postfix_expression [expression : expression]
 | postfix_expression [: expression]
 | postfix_expression [expression :]
 | postfix_expression []

Handel-C Language Reference Manual

www.celoxica.com Page 334

 | postfix_expression ([assignment_expression {,
assignment_expression}])
 | postfix_expression . identifier
 | postfix_expression -> identifier
 | postfix_expression ++
 | postfix_expression --

select_expression ::= primary_expression
 | select (constant_expression , constant_expression ,
 constant_expression)

primary_expression ::= identifier
 | constant
 | (expression)
 | { }
 | {[initializer {, initializer}[,]]}

constant ::= integer_constant
 | character_constant
 | string_constant

integer_constant ::= NUMBER

character_constant ::= CHARACTER

string_constant ::= STRING

Handel-C Language Reference Manual

www.celoxica.com Page 335

15 Index
-- (postfix and prefix operators) 95

- (subtraction) 104

! ..44, 107

!=... 106

(macro concatenation).............. 306

#define 303

#elif .. 305

#else .. 305

#endif ... 305

#ifdef .. 305

#ifndef .. 305

#include41, 116, 304

#undef .. 303

% (modulo).................................. 104

(line breaker) 307

*/ (comments delimiter) 10

. (structure member operator) 109

/ (division) 104

/* (comments delimiter) 10

// (comments delimiter) 10

?..44, 109

@ (concatenation)......................... 102

[] (bit selection)........................... 103

\ (drop operator)........................... 102

^ (bitwise XOR) 108

__clock.. 162

__isfamily() construct 182

+ (addition) 104

++ (prefix and postfix operators) 95

< (less than) 106

<- (take operator)......................... 102

<< (shift operator)........................ 102

<= (less than or equal).................. 106

<> (type qualifier) 72

= (assignment)............................... 81

== (equal to) 106

> (greater than) 106

-> (structure pointer operator)........ 109

>= (greater than or equal) 106

>> (shift operator)........................ 102

1.2V..................................... 286, 292

1.5V..................................... 286, 292

1.8V..................................... 286, 291

2.5V..................................... 286, 291

3.3V..................................... 286, 291

33MHz 3.3V........................... 286, 293

33MHz 5.0V........................... 286, 293

66MHz 3.3V........................... 286, 290

abstract declarators 321

ACF files 269, 281

Actel..................................... 180, 183

devices 180, 183

on-chip RAM 210

specifying reset pin 186

addition 104

addr .. 276

AGP...................................... 286, 290

AGP I/O standard286, 289, 290

AGP-1X 286

AGP-2X 286

algorithms...............................22, 178

debugging 22, 178

Altera180, 183, 211

devices 180, 183

on-chip RAM 211

ROMs 256

ampersand (address operator)43

ANSI-C 15, 25

calling from Handel-C 65

compared to Handel-C 15, 25

Apex devices 180, 183

arithmetic operators 104

Handel-C Language Reference Manual

www.celoxica.com Page 336

constraints files 281

I/O standards supported 289, 296

mprams 59

RAM 211

architectural types........................... 44

arithmetic operators 104

arrays34, 36, 46, 56, 119

channels

arrays 46

functions 119, 120, 121

indices 36

multi-dimensional 34, 56

pointers to 34

assert.. 99

assertion failed 99

assignments 81

asterisk (indirection operator) 43

asynchronous RAM187, 192, 300

divided clock 300

examples 188, 190

generating 300

timing 187

undivided clock 300

asynchronous reset 186, 297

attributes..................................... 245

auto .. 64

base specification.......................... 254

basic concepts5

bidirectional data transfers221, 222, 224

clocked input 224

registered input 222

binary.. 30

bind specification 254

bit fields .. 38

bit manipulation............................ 101

operators 101

bit selection.................................. 103

bitwise logical operators 108

bitwise AND 108

bitwise NOT 108

bitwise OR 108

bitwise XOR 108

block RAM 256

block specification 256

blocks................................... 178, 256

data transfer 178

BLVDS 286, 290

BLVDS I/O standard286, 290, 294

break78, 86, 88, 89

breaking lines 307

buffer specification 259

BUFG... 262

bus_clock_in.......................... 218, 221

bus_in 218, 219

bus_latch_in.......................... 218, 220

bus_out 218, 221

bus_ts 218, 221

bus_ts_clock_in 218, 224

bus_ts_latch_in...................... 218, 222

buses50, 52, 219, 220, 221, 230, 233,
243

bidirectional 221, 222, 224

clocked 221

input 219

latched 220

naming 243

read/write 221

read/write clocked 224

registered 220, 222

simulating 230

specification 50, 52

timing 233, 235

write 221

busformat specification 243, 259

Handel-C Language Reference Manual

www.celoxica.com Page 337

C language................................15, 25

compared to Handel-C 15, 25

C++.. 65

calling from Handel-C 65

type mapping in Handel-C 65

case .. 88

casting17, 39, 96, 97

chan.......................................44, 319

chanin 177, 319

channels6, 44, 46

arrays 46

between clock domains 162, 164, 166,
168, 238

chanin and chanout 177

channels

arrays 46

communication 6, 44, 162, 164

examples 164

metastability 237, 238

reading from 44

restrictions 46

simulating 177

simultaneous access 46

specifying 319

syntax 319

writing to 44

chanout 177, 319

char .. 32

character constants 315

chips ... 180

clk 204, 261

clkpulselen 195, 282

clock cycles used.................... 141, 147

clock pin specifications................... 261

clock position specifications 282

clock rate..................................... 281

clocked reading from external pins... 221

clockport specification 262

clocks141, 160, 161, 162

clock domains 162, 172

clock pins 231, 261

current 162

cycles 195

dummy 160

external 161

external resynchronization 172

fast 187, 193

internal 161

inverted 193, 196

locating 160

multiple 160, 162, 172

period 154

position specifications 282

reading from external pins 221

resynchronizing 172

simulation 160

source 160

specifying 160

SSRAM 193, 196

SSRAMs 193, 195, 196, 261

combinational loops90, 149, 262

comments10

communication6, 44, 162, 164

between clock domains 162, 164

channels 6, 44, 164

comparison 106, 107

implicit 107

operators 106

signed/unsigned 107

compile-time 70, 99, 131, 132

messages 99

selection 70, 131, 132

complex declarations 69, 71

complex expressions.................. 72, 95

Handel-C Language Reference Manual

www.celoxica.com Page 338

compound statements with replicators
.. 324

concatenation 102, 306

operator 102

preprocessor 306

conditional compilations 305

conditional directives 305

conditional execution (if ... else)........ 84

conditional operator................ 109, 131

const... 71

constant expressions 314

constant macro expressions............ 130

constants30, 315

binary 30

character 315

decimal 30

hexadecimal 30

manifest 303

octal 30

constraints264, 269, 270, 281

files 269, 281

pins 264

timing 269, 270, 281

continue .. 82

conversion 17, 96, 97

cs ... 276

CTT...................................... 286, 290

CTT I/O standard286, 289, 290

current clock 162

Cyclone devices 183, 209

constraints files 281

I/O standards supported 289, 296

mprams 57, 59

pull-up resistors 280

RAMs 211

targeting embedded memory 209

data22, 178

file format 178

input and output 22

data specification 264

dci specification 265

DDR devices 193

debug..99

assertions 99

decimal..30

declarations........................... 118, 320

disambiguating 72

functions 118

interfaces 49

mpram 57

RAM 54

ROM 54

syntax 320

declarators 320

default..................................... 78, 88

defining the clock 160

delay90, 141, 147

device specifiers............................ 183

devices 179, 180, 182, 183, 218

detecting current device 182

external 218

specifying 183

differential.................................... 294

differential I/O standards................ 294

Digital Controlled Impedance 265

disambiguator.................................72

division.. 104

do ... while 86, 89

does not equal 106

domains.........................162, 168, 172

channel timing 168

multiple clocks 162, 172

double16, 309

drop operator 102

Handel-C Language Reference Manual

www.celoxica.com Page 339

EAB...............................180, 211, 256

EDIF..................................... 243, 259

buses 259

wire names 243

efficiency 154

else... 84

enum37, 319

enumerated types37, 319

equal to 106

error generation.......................99, 307

ESB...................................... 180, 256

examples

asynchronous RAM 188, 190

between clock domains 164

function pointers 123

functions 114, 120, 121

interfacing to hardware 225

macros 114

mprams 61

optimizing code 123, 154, 157

prialt 79

SSRAM 200, 205, 207

targeting external RAM 192, 204

targeting ports to specific tools 243

timing 141, 152, 270

Excalibur devices 180, 183

I/O standards supported 289, 296

RAM 211

exit from code block 89

expressions 23, 95, 314

comparison with ANSI-C 23

complex 72

constant 314

shared 135, 136

syntax 325

timing 95

extern (external variables) 65

extern (linking to C/C++ code)65

external clocks................161, 187, 189

external hardware 218

external ROMs 212

external variables............................65

external_divide 160, 161

extfunc .. 266

extinst ... 266

extlib... 266

extpath.. 268

families..........................179, 180, 183

recognized 180, 183

fast external clock 187

fifolength 268

FIFOs 6, 268

code example 46, 145

timing 144

files... 304

including 304

reading and writing 178

timing constraints 269, 281

Flex devices........................... 180, 183

constraints files 281

I/O standards supported 289

RAMs 211

float16, 309

floating-point arithmetic16

floating-point constants.................. 315

for loops 86, 89

differences from ANSI-C 86

formatting bus and wire names 243

FPGA devices 179, 180

function calls 127

parallel 127

simultaneous 127

functions........... 19, 111, 114, 117, 118

arrays 119, 120, 121

Handel-C Language Reference Manual

www.celoxica.com Page 340

clock cycles 114, 141

compared to macros 111, 113, 114

definitions and declarations 118

differences to ANSI-C 19

examples 114

inline 68

parameters 320

pointers 122, 123

prototypes 118

restrictions 117, 127, 129

returning macro expr 71

scope 119

shared 127

syntax 316, 320

GCF files 269, 281

generic interfaces.......................... 218

generics (VHDL)............................ 278

getting started..................................5

goto .. 83

greater than 106

greater than or equal to 106

GTL I/O standard286, 289, 290, 294

GTL 286, 290, 294

GTL+ 286, 290

Handel-C5, 12, 14, 15, 25, 29, 75, 95,
111, 245, 309

code 5

compared to ANSI-C 15, 25

expressions 95

functions 111

getting started 5

keywords 309

macros 111

object specifications 245

operators 12

programs 5

statements 75

syntax 309

types 14

values and widths 29

Handel-C preprocessor 303

hardware 177

interfaces 177, 225

hexadecimal30

HSTL I/O standard...........286, 289, 291

Class I 286

Class II 286

Class III 286

Class IV 286

I/O standards .. 265, 286, 289, 290, 294

differential 294

I/O standards supported 289, 296

IBUFG.. 262

identifiers..................................... 314

if...else ..84

ifselect... 132

implicit compares 107

in (let...in) 137

indirection operator43

indirection techniques 39, 43

inferring widths...............................33

infile.. 269

initialization.............................. 59, 73

MPRAM 59

RAM and ROM 54, 210, 211

structures 36

variables 73

inline 64, 68

input 220, 221, 269, 290, 294

clocked 221

files 269

latched 220

standards 286, 290, 294

int...31

Handel-C Language Reference Manual

www.celoxica.com Page 341

integer31, 315

constants 315

range 31

syntax 315

interfaces..................... 49, 50, 52, 218

bidirectional buses 221, 222, 224

bus_* interfaces 219, 220, 221, 222,
224

customized 218, 242

debugging 228

declaration 49, 51

definition 50, 52

format 242

generic 218, 242

overview 49

pointers 42

port_* interfaces 241

simulating 228

sorts 218

specification 50, 52

syntax 318

types 218

interfacing......................177, 218, 241

with external hardware 218

with external logic 218, 241

with memory 186, 213

with the simulator 177

internal clocks 160, 161

internal RAM and ROM 54

internal_divide....................... 160, 161

intime................................... 269, 270

intwidth ... 33

inverted clocks................193, 196, 273

ISO-C.......................................15, 25

calling from Handel-C 65

compared to Handel-C 15, 25

keywords 309

labels ..83

language basics9

language summary..........9, 15, 25, 309

language syntax............................ 309

latch.. 220

register 220

latency48, 157, 169

left shift 102

less than...................................... 106

less than or equal to 106

let ... in 137

line control 306

line splicing 307

loc attribute.................................. 264

locating the clock 160

logic depth 154

reducing 154

logic types......................................31

logical operators 107

long ..32

loops 20, 85, 86, 89, 149

combinational 149

do ... while 86

for loops 86

termination 89

while loops 85

LVCMOS I/O standard286, 289, 291, 292

1.2V 286, 292

1.5V 286, 292

1.8V 286, 291

2.5V 286, 291

3.3V 286, 291

LVDCI I/O standard ..265, 286, 289, 292

1.5V 286

1.8V 286

2.5V 286

3.3V 286

Handel-C Language Reference Manual

www.celoxica.com Page 342

split termination 265, 286

LVDS I/O standard ...286, 289, 292, 294

LVPECL I/O standard 286, 289, 293, 294

LVTTL I/O standard286, 289, 293

macro expressions71, 130, 131, 133,
135, 136

in widths 71

macro procedures 138, 139

macros111, 130, 131, 138, 303

compared to functions 111, 113, 114

differences to ANSI-C 19

examples 114

introduction 130

parameterized 131, 138

preprocessor 303

recursion 133, 135, 136

substitution 303, 307

syntax 317

main function9

malloc ... 22

manifest constants 303

mapping of different width ports........ 59

maximum clock rate 154

member operators......................... 109

memory. 54, 57, 62, 186, 187, 193, 196

Actel 210

allocation 22

Altera 211

asynchronous 187, 192, 300

block 256

initialization 54

multi-port 57

off-chip 274

on Cyclone devices 209

on Stratix devices 209

on-chip 180, 210, 211, 212

pipelining 196, 207

RAM 54, 186

restrictions 97

ROM 54, 186

simultaneous access 97

specifications 256, 274

synchronous 193, 204, 261, 282

type 256

WOM 62

Xilinx 212

Mercury devices 180, 183

I/O standards supported 289, 296

mprams 57

pull up resistors 280

RAM 211

merging pins 231, 232

metastability........................... 168, 235

channels across clock domains 168,
237, 238

clock domains 168

examples 172

external resynchronization 172

stabilizing data in interfaces 236

MIF files....................................... 211

minperiod 167, 273

modulo arithmetic 104

mpram (multi-ported RAM).... 57, 59, 61

multidimensional arrays56

multi-file projects 116

multiple 160, 162

channel timing issues 163, 166

communicating between clock domains
 162, 172

multiple clocks 160, 162

multiplication................................ 104

-N option 196

NCF files 269, 281

not equal to.................................. 106

object specifications....................... 245

Handel-C Language Reference Manual

www.celoxica.com Page 343

octal.. 30

oe... 276

offchip ... 274

on-chip RAMs180, 210, 211, 212

operators12, 101, 102, 104, 106, 107,
108, 109

arithmetic 104

bit manipulation 101

bitwise logical 108

comparison 106

concatenation 102

conditional 109

drop 102

logical 107

precedence 12

relational 106, 107

shift 102

summary 12

take 102

trysema 92

width 104

optimizing code...............123, 154, 157

examples 123, 154, 157

outfile.. 269

output269, 286, 290, 294

files 269

standards 286, 290, 294

outtime................................. 269, 270

overflow .. 29

overview of Handel-C5, 12, 14, 15, 25,
29, 36, 75, 95, 111, 245, 309

padding 29, 38, 102

par...75, 76

parallel 5, 9, 44, 75, 151

access to variables 151

branch synchronization 6, 44, 164

execution 75

functions 119

programs 5

statements 75

structure 9

parameterized macro expressions.... 131

parameters............................ 111, 278

functions 111

macros 111

Verilog 278

paranoia 169, 275

PCI I/O standard286, 289, 293

33MHz 3.3V 286, 293

33MHz 5.0V 286, 293

66MHz 3.3V 286, 290

PCI-X 286, 293

pin specifications.................... 264, 276

omitting 276

pin_number attribute 264

pinouts .. 276

specifying 276

pins................ 218, 231, 232, 264, 276

constraining 264

merging 231, 232

naming 264

reset 186

specifying 276

tri-state 232

pipelining 76, 157, 196, 207

examples 207

PLD devices....................179, 180, 183

pointers39, 41, 42, 122

addresses 41

casting 17

declaration 39

operations 39

to arrays 34

to functions 122, 123

to interfaces 42

Handel-C Language Reference Manual

www.celoxica.com Page 344

port_in 218, 241

port_out 218, 241

porting C to Handel-C 32

ports 241, 277

interfacing with external logic 241

port names 241, 264

specification 277

precedence 12

preprocessor303, 305, 306

concatenation 306

conditional compilation 305

error generation 307

file inclusion 304

line control 306

line splicing 307

macros 139, 303, 307

prialt46, 78, 79, 89

prialt examples 79

ProASIC devices..................... 180, 183

constraints files 281

I/O standards supported 289, 296

pull up resistors 280

RAMs 210

slew rate on output buffer 286

proc 138, 139

program structure9

properties 278

specification 278

protecting critical code 62

prototypes116, 118, 138

functions 118

macros 116, 138

pull ... 280

QDR devices................................. 193

qualifiers.. 29

Quartus 281

assignments 281

quartus_proj_assign specification 281

RAM 57, 186, 187, 193

Actel 210

Altera 211

arrays 56

asynchronous 187, 192, 300

block RAM 256

different to arrays 54

external 188, 190, 192

foreign code 213

initialization 54, 56

multi-ported 57, 61

off-chip 188, 190, 192, 274

on-chip 180, 210, 211, 212

overview 54

restrictions 97

simultaneous access 97

synchronous 193, 195, 204, 261, 282

syntax 320

targeting 192, 204

use of 186

writing to 54

Xilinx 212

range ..31

rate specification.................... 270, 281

rclkpos.................................. 195, 282

reading from external pins....... 219, 220

recursion........................111, 117, 133

recursive macros111, 133, 135, 136,
137

shared expressions 135, 136, 137

reducing logic depth 154

reference books4

register..68

registered reading from external pins220

relational operators 106

releasesema().................................93

Handel-C Language Reference Manual

www.celoxica.com Page 345

replicated code 76

replicators.................................... 324

reset90, 186, 297

global 186

specifying reset pin 186

restrictions.......... 46, 97, 117, 127, 136

casting 97

functions 117, 127, 129

on channels 46

on RAM and ROM 97

on shared expressions 136

retime specification 284

return.....................................84, 117

types 117

right shift..................................... 102

ROM................................54, 186, 212

external 212

LUT ROM in Altera devices 256

overview 54

same rate external clock 189

sc_type specification...................... 285

scope 8, 29, 119

variable sharing 8

Select Clock dialog 162

select operator.............................. 131

selection within switch 88

sema... 62

semaphores 62, 92, 93

seq ... 76

sequential and parallel execution....... 75

sequential replication....................... 76

set 33, 160, 183, 186

clock 160

family 183

intwidth 33

part 183

reset 186

set clock 160

set family..................................... 183

set part.. 183

set reset 186

shared code..... 113, 116, 127, 135, 136

shared expressions................. 135, 136

restrictions 136

shift operators

shift operators 102

short ...32

show specification 286

side effects............................... 18, 95

sign extension97, 102, 133

signals....................................63, 319

signed 31, 32, 107

signed/unsigned................. 32, 96, 107

casting 96

simulations................................... 228

clock required 160

file I/O 178

simulating buses 230

simulating interfaces 228

simulator 178

input file format 178

output 286

sizeof ..17

sorts ... 218

interfaces 218

Spartan devices 180, 183

constraints files 281

I/O standards supported 289, 296

mprams 59

on-chip RAMs 212

RAM timing issues 256

slew rate of output buffer 286

specifications 245, 276

base 254

Handel-C Language Reference Manual

www.celoxica.com Page 346

bind 254

block 256

busformat 259

clk 261

clkpulselen 282

clock position 282

clockport 262

data 264

dci 265

extinst extlib extfunc 266

extpath 268

fifolength 268

infile and outfile 269

intime and outtime 269

minperiod 167, 273

object 245

offchip 274

paranoia 169, 275

pin 276

ports 277

properties 278

pull 280

quartus_proj_assign 281

rate 281

rclkpos 282

retime 284

sc_type 285

show 286

speed 286

standard 286, 290

std_logic_vector 295

strength 296

unconstrainedperiod 297

vhdl_type 298

warn 300

wclkpos 282

wegate 300

westart and welength 300

speed .. 286

SSRAM193, 195, 261, 282

pipelined access 196, 198, 200

read and write cycles 195, 198

SSRAMs 193, 195, 196, 261

timing 195, 196, 198, 200, 282

SSTL I/O standard....286, 289, 293, 294

SSTL18 Class I 286, 294

SSTL18 Class II 286, 294

SSTL2 Class I 286, 293

SSTL2 Class II 286, 293

SSTL3 Class I 286, 294

SSTL3 Class II 286, 294

standard specification286, 289, 290

AGP 286, 290

BLVDS 286, 290

CTT 286, 290

GTL 286, 294

HSTL 286, 291

LVCMOS 286, 291, 292

LVDCI 286, 292

LVDS 286, 292

LVPECL 286, 293

LVTTL 286, 293

PCI 286, 293

SSTL 286, 293, 294

standards.......................286, 290, 294

statements.....10, 25, 75, 141, 147, 321

comparison with ANSI-C 25

compound 324

syntax 321

timing 141, 147

static 69, 73

initializing static variables 73

std_logic_vector specification.......... 295

storage class specifiers.....................64

Handel-C Language Reference Manual

www.celoxica.com Page 347

Stratix devices................180, 183, 209

constraints files 281

embedded memory 209

I/O standards supported 289, 296

mprams 59

pull-up resistors 280

RAMs 211

strength specification..................... 296

string constants 30

strings....................................30, 315

struct .. 36

structure member operator............. 109

structure pointer operator 109

structure pointers............................ 42

structures 36, 42, 319

storage 36

syntax 319

subtraction................................... 104

summaries 10, 12, 14, 309

keywords 309

operators 12

statements 10

types 14

supported32, 180

devices 180

types for porting 32

switch88, 89

termination 89

synchronization.................................6

synchronous RAMs193, 195, 204, 261,
282

clocks 193, 195, 196, 261

examples 196, 200, 205, 207

generating 282

read and write cycles 195, 198

timing 196, 198, 200, 282

syntax ... 309

take operator................................ 102

targeting.................177, 179, 183, 186

FPGA/PLD devices 179, 183, 209

hardware 177

ports 243

RAM and ROM 54, 186

specific tools 243

Tcl files 269, 281

timing............................141, 154, 233

asynchronous RAM 187

buses 233, 235

constraints 269, 270, 281

efficiency 154

examples 141, 152, 233

introduction 141

SSRAM 195, 282

statements 141, 147

TriMatrix memory.......................... 209

tri-state ... 218, 221, 222, 224, 232, 294

buses 218, 221, 222, 224

interfaces 218, 294

pins 232

try ... reset.....................................90

trysema().......................................92

ts...........................218, 221, 222, 224

type 14, 16, 22, 32, 72

clarifier 72

conversion 17, 96, 97

mapping for C and C++ 32, 65

names 321

operators 16, 68, 70, 71

qualifiers 71

summary 14

type clarifier <>..............................72

typedef ..69

typeof..70

types..................14, 16, 22, 29, 31, 44

Handel-C Language Reference Manual

www.celoxica.com Page 348

architectural 44

logic 31

overview 14, 29

types in C and Handel-C 16, 22

VHDL 295

unconstrainedperiod 297

undefined....................................... 33

undivided external clock................. 190

unions21, 309

unsigned........................... 31, 32, 107

values ... 29

overflow 29

variables.................................73, 151

auto 64

default values 73

initialization 30, 64, 71, 73

local 64

parallel access 151

width of variables 17, 29

Verilog... 278

instantiating components 254

parameters 278

VHDL... 295

generics 278

instantiating component 254

types 295

vhdl_type specification................... 298

Virtex devices 180, 183

constraints files 281

I/O standards supported 286, 296

mprams 59

on-chip RAM 212

RAM timing issues 256

slew rate of output buffer 286

specifying clock input 262

specifying DCI 265

Virtex-II Pro 180, 183

void.................................. 39, 84, 117

volatile ..71

warn specification.......................... 300

wclkpos 195, 282

we .. 276

wegate188, 190, 192, 300

welength......... 187, 188, 190, 192, 300

westart 187, 188, 190, 192, 300

while loops 85, 86

width...........................17, 29, 33, 104

adjustment 17, 102

inference 33

of variables 17, 29

operator 104

wires63, 243

naming 243

with .. 245

WOM (write-only memory ports) . 57, 62

work library.................................. 254

write enable187, 193, 300

asynchronous RAM 187, 300

positioning 300

synchronous RAM 193

write strobe.................................. 187

write-only memory62

writing to external pins 221

Xilinx.............................180, 183, 212

bit mapping 59

block specification 256

devices 180, 183

on-chip RAM 212

ZBT-compatible devices 193

	Introduction
	References

	Getting started with Handel-C
	Basic concepts
	Handel-C programs
	Parallel programs
	Channel communication
	Channel synchronization
	Communication without synchronization

	Scope and variable sharing

	Language basics
	Program structure
	Sequential structure
	Parallel structure
	Overall structure

	Comments
	Statement summary
	Operator summary
	Type summary
	Common logic types
	Architectural types
	Compound types
	Special types

	Comparison of Handel-C and ANSI-C
	Handel-C v C: types and type operators
	Handel-C v C: floating-point variables
	Handel-C v C: variable widths and casting
	Handel-C widths
	Casting
	Arithmetic and comparisons on variables of different width
	sizeof

	Handel-C v C: side effects
	Handel-C v C: functions
	Re-writing recursive functions

	Handel-C v C: loop statements
	Handel-C v C: unions
	Handel-C v C: data input and output
	Handel-C v C: memory allocation
	Handel-C v C: standard library
	C and Handel-C types and objects
	Expressions in C and Handel-C
	Statements in C and Handel-C

	Handel-C constructs not found in ANSI-C
	Parallelism
	Timing
	Compile-time selection and expansion and generic code
	Targeting hardware; FPGAs and PLDs
	Targeting hardware; memory
	Targeting hardware; wires
	Targeting hardware; resets
	Interfacing to existing modules and to peripherals
	Bit manipulation

	Declarations
	Introduction to types
	Specifiers
	Type qualifiers
	Disambiguator

	Handel-C values and widths
	String constants
	Special characters:

	Constants

	Logic types
	int
	Signed | unsigned syntax
	Supported types for porting
	Inferring widths
	Arrays
	Example
	Multidimensional arrays
	Pointers to arrays

	Array indices
	struct
	Syntax
	Storage
	Example
	Initialization

	enum
	Example

	Bit fields
	Syntax
	Example

	Pointers
	Casting pointers
	Pointer arithmetic
	Examples

	Pointers and addresses
	Pointers to functions
	Pointers to interfaces
	Example

	Structure pointers
	address and indirection operators
	Example: pointer assignment
	Example: pointer to pointer assignment

	Architectural types
	Channels
	Syntax
	 Reading from a channel
	Writing to a channel
	Example

	FIFO code example
	Arrays of channels
	Restrictions on channel accesses
	Simultaneous channel access concealed within prialt
	Examples:
	Restrictions on channels accesses between clock domains

	Timing and latency in FIFOs

	Interfaces: overview
	Interface declaration
	Interface definition
	Port definitions
	Example

	Example interface to external code
	Interface specifications

	RAMs and ROMs
	Initialization
	Inferring size from use
	Accessing RAMs and ROMs
	Differences between RAMs and arrays
	RAM and ROM support on different devices
	Multidimensional memory arrays
	Syntax
	Example

	mpram (multi-ported RAMs)
	Syntax
	Examples

	Initialization of mprams
	Mapping of different width mpram ports
	Xilinx bit mapping
	ApexII bit mapping

	mprams example
	File 1:
	File 2:

	WOM (write-only memory)
	Syntax
	Example

	sema
	Syntax
	Example

	signal
	Syntax
	Example

	Storage class specifiers
	auto
	Example

	extern (external variables)
	Example
	Syntax

	extern language construct
	Examples
	Mapping of types to C/C++
	Mapping of types outside extern

	register
	Example

	inline functions
	Example
	Syntax

	static
	Example
	Syntax
	Static variables in arrays of functions

	typedef
	Example

	typeof
	Syntax
	Example

	const
	Example 1
	Example 2

	volatile
	Complex declarations
	Macro expressions in widths
	<> (type clarifier)
	Example

	Using signals to split up complex expressions

	Variable initialization
	Global, static and const variables
	All other variables
	Simulation

	Statements
	Sequential and parallel execution
	Sequential branches

	seq
	Replicated par and seq
	Syntax
	Example
	Replicated pipeline example

	prialt
	Priority
	Default
	Restrictions

	Using prialt: examples
	Restrictions on using prialt

	Assignments
	Short cuts
	continue
	Example

	goto
	Example

	return [expression]
	Example

	Conditional execution (if ... else)
	while loops
	do ... while loops
	for loops
	switch
	break
	Loops
	switch
	prialt

	delay
	try... reset
	Syntax
	Examples

	trysema()
	Example

	releasesema()
	Example

	Expressions
	Introduction to expressions
	Clock cycles required
	Breaking down complex expressions
	Prefix and postfix operators

	Casting of expression types
	Explanation of signed/unsigned casting
	Restrictions on casting
	Explanation

	Restrictions on RAMs and ROMs
	Example of disallowed assignment
	Example of disallowed condition evaluation
	Incorrect execution with conditional operator

	assert
	Syntax
	Using assert as a statement
	Using assert as an expression

	Bit manipulation operators
	Shift operators
	Take / drop operators
	Concatenation operator
	Bit selection
	Width operator

	Arithmetic operators
	Width of results

	Relational operators
	Signed/unsigned compares
	Implicit compares

	Logical operators
	Example
	C-like example

	Bitwise logical operators

	Conditional operator
	Member operators (. / ->)

	Functions and macros
	Functions and macros: overview
	Functions and macros: language issues
	Called by reference or value
	Typed or untyped parameters
	Recursion

	Functions and macros: sharing hardware
	Functions and macros: clock cycles
	Functions and macros: examples
	Preprocessor macro
	Macro expression
	Shared expression
	Macro procedure
	Function
	Array of functions
	Inline function
	How to call the example macros and functions

	Accessing external names
	Recursion in macros and functions

	Introduction to functions
	Function definitions and declarations
	Function definition
	Function declaration

	Functions: scope
	Arrays of functions
	Syntax

	Function arrays: example
	Function arrays example with static variables
	Function pointers
	Function pointers example
	Possible code optimization

	Simultaneous function calls
	Example

	Multiple functions in a statement

	Introduction to macros
	Non-parameterized macro expressions
	Constant
	Constant expression

	Parameterized macro expressions
	select operator
	Comparison with conditional operator
	Combining with macros

	ifselect
	Syntax
	Example
	Pipeline example

	Recursive macro expressions
	Variable sign extension example

	Recursive macro expressions example
	Shared expressions
	Example
	Warning

	Using recursion to generate shared expressions
	Restrictions on shared expressions
	let ... in
	Example
	Independent let …in definitions
	Related let …in definitions
	Shared recursive macro
	Scope of definitions

	Macro procedures
	Example

	Macro procedures compared to pre-processor macros

	Introduction to timing
	Statement timing
	Example timings
	Statements
	Parallel statements
	While loop
	For loop
	Decision
	Channels
	FIFOs
	FIFO: channel and FIFO comparison code
	Example with FIFO

	Statement timing summary

	Avoiding combinational loops
	Further combinational loop code example

	Parallel access to variables
	Example

	Detailed timing example
	Time efficiency of Handel-C hardware
	Reducing logic depth
	Guidelines for reducing logic depth
	Adder example
	Comparison example
	Complex expression example
	Empty statement example

	Pipelining
	Pipelined multiplier example

	Clocks overview
	Locating the clock
	External clocks
	Example

	Internal clocks fed from expressions
	Example

	Current clock
	Example

	Multiple clock domains
	Channels communicating between clock domains
	Example
	Timing issues for channels communicating between clock domai
	Domain 1:
	Domain 2:
	Managing channel timing
	Throughput between clock domains using channels
	Synchronization between clock domains
	Using interfaces to communicate between clock domains

	Simulating multiple clock domains
	Using the DK simulator

	Targeting hardware and simulation
	Interfacing with the simulator
	Simple example
	Multiple channel example

	Simulator input file format
	Block data transfers

	Targeting FPGA and PLD devices
	Summary of supported devices
	Detecting the current device family
	Example

	Targeting specific devices via source code
	Specifying a global reset
	Examples

	Use of RAMs and ROMs with Handel-C
	Asynchronous RAMs
	Fast external clock
	Fast external clock example
	To declare a 16Kbyte by 8-bit RAM:
	Same rate external clock
	Undivided external clock
	wegate example
	Targeting external asynchronous RAMs
	To declare a 16Kbyte by 8-bit RAM:
	Accessing RAM

	Synchronous RAMs
	SSRAM clocks
	SSRAM devices supported
	SSRAM write-enable
	SSRAM read and write cycles
	Specifying SSRAM timing
	Pipelining on-chip SSRAM
	Creating pipelined SSRAM accesses
	Devices supporting pipelined on-chip SSRAM
	Non-pipelined access to RAM
	Pipelined access to RAM
	Effect of performing a pipelining transform
	Targeting external synchronous RAMs
	Example
	Read cycle for a flow-through SSRAM
	Write cycle for a flow-through SSRAM
	Read cycle for a pipelined-output SSRAM
	Write cycle for a pipelined-output SSRAM

	Targeting Stratix and Cyclone memory blocks
	Example

	Using on-chip RAMs in Actel devices
	Synchronous and asynchronous access
	Initialization

	Using on-chip RAMs in Altera devices
	EAB structures
	Synchronous and asynchronous access
	Initialization
	Creating RAMs without an inverted clock

	Using on-chip RAMs in Xilinx devices
	Using external ROMs
	Connecting to RAMs in foreign code
	Generating an interface to a foreign code RAM
	Generating an interface to a foreign code MPRAM

	Using other RAMs

	Interfacing with external hardware
	Interface sorts
	Predefined interface sorts
	Custom or generic interface sorts

	Reading from external pins bus_in
	Example

	Registered reading from external pins: bus_latch_in
	Example

	Clocked reading from external pins: bus_clock_in
	Writing to external pins: bus_out
	Bidirectional data transfer: bus_ts
	Example

	Bidirectional data transfer with registered input: bus_ts_la
	Example

	Bidirectional data transfer with clocked input: bus_ts_clock
	Example hardware interface
	Signals connected
	Read cycle timing
	Write cycle timing
	Bus declarations
	Writing data
	The main program

	Simulating interfaces
	Bus-type and port-type interfaces
	Generic interfaces

	Buses and the simulator
	Using preprocessor definitions
	Channel example
	External function call example
	Example with plugin

	Merging pins
	Merging clock pins
	Merging input pins
	Merging tri-state pins

	Timing considerations for buses
	bus_in interfaces
	bus_out interfaces
	Bi-directional tri-state buses

	Example timing considerations for input buses
	Example timing considerations for output buses

	Metastability
	Techniques to minimize the problem
	Stabilizing the data
	Designing the system to minimize the problem
	Techniques to minimize the problem
	Timing constraints used for channels across clock domains
	How channels are designed to deal with metastability

	Using interfaces: External resynchronizing example

	Ports: interfacing with external logic
	port_in
	port_out
	Port names

	Specifying the interface
	Targeting ports to specific tools
	Example format B[I]
	Example format B<I>

	Object specifications
	Summary of specifications
	Compiler atttributes
	Simulator attributes
	Clock attributes
	Channel attributes
	Channel and memory attributes
	Memory attributes
	Interface and memory attributes
	Interface attributes
	Examples

	base specification
	Example

	bind specification
	VHDL example 1: with bind set to 0:
	VHDL example 2: with bind set to 1:
	Verilog example 1: with bind set to 0:
	Verilog example 2: with bind set to 1:

	block specification
	Issues with Xilinx Virtex, VirtexE and Spartan-IIE
	Code example with timing issues
	Solution to timing problem

	buffer specification
	Example 1:
	Example 2:
	Example 3:

	busformat specification
	Examples

	Specifying the clock pin for SSRAM
	Example

	clockport specification
	Port declaration
	Clock declaration
	Example clock declarations

	data specification (pin constraints)
	Bus-type interface example
	Port-type interface example
	Generic interface example

	dci specification
	Examples

	extinst, extlib, extfunc specifications
	extlib
	extfunc
	extinst
	Examples

	extpath specification
	Example

	fifolength specification
	infile and outfile specifications
	intime and outtime specifications
	Timing constraints example
	minperiod specification
	offchip specification
	Example

	paranoia specification
	Circuit with paranoia set to default of 1
	Circuit showing constraints if paranoia is set to 0

	Pin specifications
	ports specification
	Examples

	properties specification
	EDIF Example
	VHDL/Verilog example (bind = 1)
	VHDL/Verilog example (bind = 0)

	pull specification
	Example

	quartus_proj_assign specification
	Example

	rate specification
	rclkpos, wclkpos and clkpulselen specifications (SSRAM timin
	Illustration
	Examples

	resolutiontime specification
	Achieving a given value of resolution time

	retime specification
	sc_type specification
	Example 1: Handel-C ports in SystemC without sc_type specif
	Example 2: Handel-C ports in SystemC with sc_type specificat

	show specification
	speed specification
	Example

	standard specification
	Available I/O standards
	Examples

	I/O standards supported by different chips
	I/O standard details
	AGP (1x, 2x) – Advanced Graphics Port
	BLVDS - Bus Low Voltage Differential Signal
	CTT – Center Tap Terminated
	GTL+ – Gunning Transceiver Logic Plus
	HSTL – High-speed Transceiver Logic
	HyperTransport
	LVCMOS (3.3 V) – 3.3 Volt Low-Voltage CMOS
	LVCMOS (2.5 V) – 2.5 Volt Low-Voltage CMOS
	LVCMOS (1.8 V) – 1.8 Volt Low-Voltage CMOS
	LVCMOS (1.5 V) – 1.5 Volt Low-Voltage CMOS
	LVCMOS (1.2 V) - 1.2 Volt Low-Voltage CMOS
	LVDCI - Low Voltage Digital Controlled Impedance
	LVDS – Low Voltage Differential Signal
	LVPECL – Low Voltage Positive Emitter Coupled Logic
	LVTTL – Low Voltage TTL
	PCI (33 MHz, 3.3 V) & PCI (66 MHz, 3.3 V) – 3.3 Volt PCI
	PCI (33 MHz, 5.0 V) – 5.0 Volt PCI
	PCI-X
	SSTL2 – Stub Series Terminated Logic for 2.5 V
	SSTL3 – Stub Series Terminated Logic for 3.3 V
	SSTL18 - Stub Series Terminated Logic for 1.8 V
	GTL – Gunning Transceiver Logic Terminated

	Differential I/O standards

	std_logic_vector specification
	Example 1: Handel-C instantiation of a Bloo component with
	Example 2: Handel-C instantiation of a Bloo component with s

	strength specification
	Example

	synchronous specification
	Example

	unconstrainedperiod specification
	vhdl_type specification
	Example 1: Handel-C instantiation of a Bloo component witho
	Example 2: Handel-C instantiation of a Bloo component with v
	Example 3: Handel-C instantiation of a Bloo component with v

	warn specification
	wegate specification
	westart and welength specifications
	Examples

	Handel-C preprocessor
	Preprocessor macros
	Simple macros
	Parameterized macros
	Undefining identifiers

	File inclusion
	Conditional compilation
	Conditional directives
	Example
	Conditional definition

	Line control
	Concatenation in macros
	Error generation
	Predefined macro substitution
	Line splicing

	Language syntax
	Language
	Language syntax conventions
	Keyword summary
	Constant expressions
	Identifiers: syntax
	Integer constants: syntax
	Character constants: syntax
	Strings: syntax
	Floating-point constants: syntax

	Functions and declarations: syntax
	Macro/shared exprs/procs: syntax
	Interfaces: syntax
	Structures and unions: syntax
	Enumerated types: syntax
	Signal specifiers: syntax
	Channel syntax
	Ram specifiers: syntax
	Declarators: syntax
	Function parameters: syntax
	Type names and abstract declarators: syntax
	Statements: syntax
	Compound statements with replicators

	Replicators: syntax
	Replicator initialization definitions
	Replicator update definitions

	Expressions: syntax

	Index

