PHP Debugging

© 2013 Christopher Vickery

Debugging is the art of locating errors in your code. There are three types of
errors to deal with:

1. Syntax errors: When code violates the grammatical rules of the
language because of a missing semicolon, misspelled keyword,
improperly balanced quotes, parentheses, curly braces, etc., the code
cannot even start to execute. Normally, syntax errors are the easiest
to fix: the compiler or interpreter issues an error message telling you
where the error is and some information about it.

2. Runtime errors: When a program is able to start running (no
syntax errors), it may still fail because it violates some property of
the language or the programming environment. Different languages
can detect different types of runtime errors. For PHP, some examples
are references to variables that have not been assigned a value yet,
attempts to do arithmetic on non-numeric variables, and many more.
The runtime system detects these errors and normally tells where
they occurred in the code. For an interpreted language like PHP, the
error message is as useful as a syntax error: the processor will issue
a message telling what the error is and where it was detected.

3. Logicerrors: These are errors that go undetected by the
language processor: they are mistakes in the code that cause it to
generate the wrong results. They are the most difficult to fix because
there is no message that tells you where the error occurred. The
programmer has to test all code carefully to make sure there are no
logic errors, and when one does show up, the programmer has to
figure out what the mistake was that caused it, all with no help from
the language processor.

PHP runs in the context of a web server, which might be running on a
different computer connected by the Internet to the one where you are
writing your code. As a result, debugging PHP code is more difficult than
other languages, where it is relatively easy to receive syntax and runtime
error messages and even to interact directly with running code to track
down logic errors.

This document covers some of the techniques available for debugging PHP
code.

One important debugging tool is outside the scope of this document: xdebug
is a module that can be added to a PHP processor so that you can trace and
interact with PHP scripts in much the way debugging tools for other
languages work. But (a) not all PHP installations have the xdebug module
installed and (b) a separate client program is needed for interacting with
the xdebug module, and there is no one client that “everyone” uses. As a
result, there is a lot of setup to do before you can use xdebug.

Surprisingly, the simplest types of errors lead us directly into what are
perhaps the most technically awkward techniques for debugging PHP code.

To set the background for those techniques, we need to review one model of
how programs handle input and output:

Standard Output
Standard Input » — (stdout)
(stdin) Program
Standard Error
(stderr)

In this model, stdin, stdout, and stderr are “streams” of characters. A program
reads characters from stdin, writes its “normal” output to stdout, and writes
error messages to stderr.

When this model was first adopted by the Unix operating system, the
standard input to a program normally came from a user’s keyboard, so the
stdin stream was whatever sequence of keystrokes the user typed. The
standard output and error streams were normally the sequence of characters
displayed on the user’s terminal. The Unix system'’s innovation was to
provide a mechanism for connecting stdin, stdout, and stderr to other
input/output devices (such as disk files or network connections) or even to
other programs, in a pipeline. The ‘|’ character on the command line to link
programs this way, which is why it is usually called the “pipe character.” By
keeping stdout separate from stderr a pipeline could connect the normal
output of one program to another one, while still sending messages about
error conditions to the user’s terminal or to a log file for later examination.

Here’s an example Unix command line to illustrate the process:
cat < x.php | sort | uniq > distinct_lines.txt 2> error.log

The cat command (short for “concatenate”) simply copies files from stdin to stdout. In this
example, its stdin is redirected, using the ‘<’ symbol, from the keyboard to come from the
contents of all the files in the current directory that have the .php extension. The stdout
stream of the cat command is piped to the stdin stream of the sort command, which arranges
all of the lines it reads from stdin in alphabetical order; stdout of sort is piped to stdin of unig,
which reads lines from stdin, discards successive duplicates, and writes the remainder to
stdout. (Unix developers didn’t like typing, so they abbreviated “unique.”) Finally, the stdout
of uniq is redirected to a file named distinct_lines.txt, and any error messages are
redirected to another file named error.log. The three streams are numbered 0-2, so 2>’

means to redirect stream #2: stderr instead of the default output stream, stdout, which
would be #1.
Programs that adhere to this model and which copy stdin to stdout while
making some changes along the way are commonly called “filters.” (cat, sort,
and uniq are all filters, but a command like Is, which lists the contents of a
directory, is not.)

This is not the only execution model for programs: an event-driven model is
used when there is a graphical user interface, like a Windows, OS X, or mobile
application. But for PHP, this “standard I/0” model is the one that’s used.

When you include PHP code in a web page, the PHP processor acts as a filter.
The web server (Apache) invokes the PHP processor after redirecting its
stdin to come from your .php or .xhtml file, and its stdout to the network
connection that goes back to the browser that requested the web page. The
PHP processor writes text outside the <?php .. ?> blocks to stdout
unchanged. Inside PHP blocks, echo statements and certain functions, like
exit(), var_dump(), and printf{) write to the stdout stream as well, while the
rest of the PHP code gets executed without writing anything to stdout.

But stderr? Ah, there’s the rub. The PHP processor writes both syntax errors
and runtime error messages to stderr. During development, these error
messages are invaluable for debugging, but in a production environment (a
web site that is open to the world), these error messages can give a hacker
valuable clues about the we site that would help in breaking into it. So during
development, we want to be able to see these messages easily, but in
production we still need to be able to see them (they tell us there is a bug we
didn’t know about), but we don’t want to expose them to the world.

Both Apache and PHP use configuration files, which they read when the web
server starts running, to control how to handle error messages. The Apache
configuration file is called httpd.conf, typically located in a subdirectory
where Apache was installed. For example, on a Windows computer, it might
be found in the

C:\Program Files\Apache Software Foundation\Apache2.2\conf
directory. The PHP configuration file is called php. ini, and is typically in the
directory where PHP was installed. For example, on a Windows computer, it
might be found in the C:\Program Files\PHP directory. Anyone who can log
into the server computer can view, but not change, both files. Doing so can be
very instructive.

These two configuration files use different syntax rules from one another, but
both generally take the form of lines that start with some sort of keyword,
followed by a value.

Apache Configuration:

e ErrorLog The pathname of a file for the stderr streams for both
Apache and PHP.

e CustomLog The pathname of a file where Apache writes a message
for every web page it delivers to clients.

Unlike the PHP settings about to be described, these two Apache settings
cannot be changed after the web server starts running. (Many other Apache
settings can be customized for different directories, but not these two.)

PHP Configuration

PHP allows you to change several of the php.ini settings related to error
messages from within your PHP code, as it executes. To make things concrete,
here are the contents of a file that modifies some of these settings, with line-
by-line explanations below.

Line No. | PHP Code

—_

<?php

date_default_timezone_set('America/New_York');

ini_set('error_reporting', E_ALL);

ini_set('log_errors', 'On');

ini_set('error_log', './error_log');

ini_set('display_errors', 'On');

assert_options(ASSERT_ACTIVE, 1);

assert_options(ASSERT_WARNING, 1);

o (0 N oo (U0 | W N

include('index.php');

10 7>

Lines 3-6 change the values of parameters that were set when Apache started
running and the PHP module processed the php.ini file for the system. All
PHP warnings and errors indicate problems in your code, so line 3 specifies
that PHP should generate all possible messages. (There are situations where
you might not want to have all these messages, but not when you are writing
new code.) Line 4 says to write stderr to a log file, and line 5 says the log file
is a file named error_log in the current directory instead of the Apache
ErrorLog file. (See below for more information about setting up this log file.)
Line 6 says to write error messages to stdout (i.e. to the client’s browser) as
well as to the log file. This setting in particular is one that should never be
used in a production environment.

Lines 7 and 8 control the behavior of PHP assert() statements. Assertions are
a way to make sure a program is working as expected, but are ignored by
default because they make programs run a little slower. They are discussed
further below.

Line 9 tells the PHP module to interject another file into its stdin stream at
this point, in this case an index page that needs to be debugged.

By putting these 10 lines in a separate file (perhaps called debug. php), you
can accomplish two things: (1) if you have to develop your code on a
production site you can run your code in either development or production
mode simply by using debug. php in the URL or not, and (2) if there are basic
syntax errors in index. php, the PHP processor may “give up” before it can
execute any calls to ini_set(); by putting them in this simple, separate, file,
PHP executes the ini_set() calls before trying to parse index. php.

A previous version of this document suggested that the “giving up” issue had

to do with whether HTTP headers had been sent or not, but that doesn’t make
sense.

Setting Up To Log Errors

If you have direct access to Apache’s ErrorLog file from the command line, a
common debugging technique is to use the Unix tail command to view the
contents of the file in real time: you can read the error messages as Apache
and its PHP module write them. But by creating your own ErrorLog file from
within your PHP code, as shown in lines 3-5 of the sample code above,
provides several advantages:

e You can log error messages where you can see them even if, for some
reason, Apache is configured to save them in a location not accessible
to you, or even if Apache is configured not to log errors at all. (The
latter is highly unlikely.)

¢ You can separate your own error messages out from all the other ones
encountered on the system. The larger the number of web sites being
hosted on the server there are, the more valuable this feature is.

¢ You can turn logging on and off dynamically rather than being
constrained by the settings that were established in the httpd. conf
and php. ini files when the server started running.

¢ You can add code to your site that writes messages to the log file to
help you locate errors without cluttering up the system-wide log file.
Two functions you can use to generate these debugging messages,
assert() and error_log (), are discussed further below.

Although it would be inappropriate to do this in a production environment,
you can place a personal ErrorLog file in a place where you can view it from a
web browser. That’s what we did on line 5 of the sample code above: the file
is in the same directory as the one that holds the index file being debugged.
The log file is plain text, so telling a browser to use a URL that points to the
log file will cause it to be displayed as-is with no HTML formatting.

No matter where the log file is located, there is a permissions issue to deal
with: Apache/PHP must be able to write to it. As a developer, you have
permission to write files to the server. And when Apache is running it has
permission to read those files so it can deliver them over the Internet. But
just as you don’t have permission to write files just anywhere on the server,
Apache can’t write files just anywhere either. The ErrorLog file has to be set

up explicitly so that Apache can write to it. Without going into the full details
of the way users and permissions are managed under different operating
systems, this means that a superuser must grant write permission on the log
file to the Apache user. For example, on an OS X system where Apache runs as
a user named _www, this command could be used:

sudo chown _www error_log

This command changes the owner of the file named error_log to the _www
user, which works because the owner of a file normally has write access to it.

An advantage of having a personal ErrorLog file not mentioned above is that
during development, a bug can put your code in an endless loop: if that loop
includes something that generates an error, the log file can get very big, very
fast. (A recent case: 1.7GB in 5 seconds!) Even if your log file isn’t too large,
you are generally not interested in old parts of the file, and may want to clear
the file so you don’t have to scroll down to the bottom each time you look at
it. The following web page will do that for you. It doesn’t need any special

permissions, just that the Apache “user” can write to error_log:
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>Clear Error Log</title>
</head>
<body>
<?php
echo "<h1>" . ‘du -sh error_log"' . "</h1>\n";
fopen('error_log', 'w+') or die("<p>Unable to clear error_log</p>\n");
echo "<p>error_log cleared</p>";
>
</body>
</html>

The call to fopen() is what clears the file; the remainder of the code makes
this into a web page that provides some feedback to you when you look at it.

Naming Your Error Log File

The conventional name for an ErrorLog file on Apache is error_log, but you
can name it anything you want: error. log, my_problems, whatever. The
point is not to confuse the name of the file with the name of the PHP setting
for naming it, as on line 5 in the sample code.

The process of recognizing if a program is syntactically correct is called
parsing, and the messages from PHP that deal with syntax errors generally
contain the word “parse” in them. By setting up a custom error log and using
the sample code at the beginning of this section, you can get to see any syntax
error messages generated by the PHP processor, even in a production
environment.

it
The PHP error_log() Function

There is a function you can call from within your PHP code to write whatever
messages you like to your ErrorLog file and, as might be able to guess, it’s
name is error_log(). There are several optional parameters you can pass to
this function (including a way to get the message emailed to you), but the
simplest version is just to pass it a string that gives you the information you
want to see. Note that string interpolation and concatenation can be your

friends here:

error_log(“The value of a_variable is $a_variable on line “ .
__LINE__ . “ of “ . __FILE__);

Assertions

The assert() function takes a string as its argument. The PHP processor
executes the string as PHP code, and either “succeeds” or “fails” depending
on whether the result of executing the code yields a value of true or false
respectively. If the assertion succeeds, nothing happens, but if the assertion
fails, the processor takes the action established by the assert_options()
function: if ASSERT_WARN is set, a message gets written to the ErrorLog, but if
ASSERT_BAIL is set instead, the PHP processor “bails out” at that point: it

stops processing the file. The nice feature of assertions compared to the use
of echo, var_dump(), or error_log() function calls is that they can be left in the
code without causing any overhead (because they will be ignored) by setting
the ASSERT_ACTIVE option off.

A common use for assert processing is to test for program correctness by
establishing preconditions (before this code gets executed, certain conditions
must be true) and postconditions (after this code executes, certain conditions
must be true. For example, if a function receives an argument that is
supposed to be the name of a directory, the function definition could start
with:

function my_function($pathname_of_a_directory)

{
assert(‘is_dir($pathname_of_a_directory)’);
// remainder of the function definition ..

}

